The breast and ovarian cancer suppressor BRCA1 acquires significant ubiquitin ligase activity when bound to BARD1 as a RING heterodimer. Although the activity may well be important for the role of BRCA1 as a tumor suppressor, the biochemical consequence of the activity is not yet known. Here we report that BRCA1-BARD1 catalyzes Lys-6-linked polyubiquitin chain formation. K6R mutation of ubiquitin dramatically reduces the polyubiquitin products mediated by BRCA1-BARD1 in vitro. BRCA1-BARD1 preferentially utilizes ubiquitin with a single Lys residue at Lys-6 or Lys-29 to mediate autoubiquitination of BRCA1 in vivo. Furthermore, mass spectrometry analysis identified the Lys-6-linked branched ubiquitin fragment from the polyubiquitin chain produced by BRCA1-BARD1 using wild type ubiquitin. The BRCA1-BARD1-mediated Lys-6-linked polyubiquitin chains are deubiquitinated by 26 S proteasome in vitro, whereas autoubiquitinated CUL1 through Lys-48-linked polyubiquitin chains is degraded. Proteasome inhibitors do not alter the steady state level of the autoubiquitinated BRCA1 in vivo. Hence, the results indicate that BRCA1-BARD1 mediates novel polyubiquitin chains that may be distinctly edited by 26 S proteasome from conventional Lys-48-linked polyubiquitin chains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M308540200 | DOI Listing |
J Biol Chem
January 2025
Department of Biology, Saint Louis University, St. Louis, MO 63103. Electronic address:
Miy1 is a highly conserved de-ubiquitinating enzyme in yeast with MINDY1 as its human homolog. Miy1 is known to act on K48-linked polyubiquitin chain, but its biological function is unknown. Miy1 has a putative prenylation site, suggesting it as a membrane-associated protein that may contribute to the regulation of cell signaling.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University Hangzhou China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. Electronic address:
Breast cancer is one of the most common malignant tumors among women worldwide, and its high degree of metastasis significantly impacts treatment effectiveness leading to poor prognosis. The potential molecular mechanisms underlying breast cancer metastasis remain to be further elucidated. In this study, via database analysis, we revealed that the deubiquitinase josephin domain containing 2 (JOSD2) was abnormally amplified in patients with metastatic breast cancer, and was significantly negatively correlated with patient prognosis.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China. Electronic address:
Renal interstitial fibrosis is the main factor determining chronic kidney disease (CKD) progression, and renal tubular epithelial cells are the key drivers of this pathological process. Herein, we revealed significantly increased ubiquitin-specific peptidase 10 (USP10) expression in the kidney tissues of both patients with CKD and mice induced by unilateral ureteral obstruction, as well as in transforming growth factor-beta 1 (TGFβ1)-induced renal tubular epithelial cells. In vivo, treatment with the USP10 small molecule inhibitor Spautin-1, which inhibits its deubiquitinating activity, weakened renal interstitial fibrosis progression and alleviated the subsequent inflammatory response and oxidative stress in male mice.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
Cezanne-2 (Cez2) is a deubiquitinylating (DUB) enzyme involved in the regulation of ubiquitin-driven cellular signaling and selectively targets Lys11-linked polyubiquitin chains. As a representative member of the ovarian tumor (OTU) subfamily DUBs, it performs cysteine proteolytic isopeptide bond cleavage; however, its exact catalytic mechanism is not yet resolved. In this work, we used different computational approaches to get molecular insights into the Cezanne-2 catalytic mechanism.
View Article and Find Full Text PDFPLoS Pathog
January 2025
National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
Interferon regulatory factor 3 (IRF3) is a central hub transcription factor that controls host antiviral innate immunity. The expression and function of IRF3 are tightly regulated by the post-translational modifications. However, it is unknown whether unanchored ubiquitination and deubiquitination of IRF3 involve modulating antiviral innate immunity against RNA viruses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!