Neurological dysfunction is a common finding in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly known. In the present study, we investigated the effect of the in vitro effect of the branched chain alpha-keto acids (BCKA) accumulating in MSUD on some parameters of energy metabolism in cerebral cortex of rats. [14CO(2)] production from [14C] acetate, glucose uptake and lactate release from glucose were evaluated by incubating cortical prisms from 30-day-old rats in Krebs-Ringer bicarbonate buffer, pH 7.4, in the absence (controls) or presence of 1-5 mM of alpha-ketoisocaproic acid (KIC), alpha-keto-beta-methylvaleric acid (KMV) or alpha-ketoisovaleric acid (KIV). All keto acids significantly reduced 14CO(2) production by around 40%, in contrast to lactate release and glucose utilization, which were significantly increased by the metabolites by around 42% in cortical prisms. Furthermore, the activity of the respiratory chain complex I-III was significantly inhibited by 60%, whereas the other activities of the electron transport chain, namely complexes II, II-III, III and IV, as well as succinate dehydrogenase were not affected by the keto acids. The results indicate that the major metabolites accumulating in MSUD compromise brain energy metabolism by blocking the respiratory chain. We presume that these findings may be of relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2003.09.010 | DOI Listing |
Stem Cell Rev Rep
January 2025
Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland.
Evidence accumulated mitochondria, as the "powerplants of the cell," express several functional receptors for external ligands that modify their function and regulate cell biology. This review sheds new light on the role of these organelles in sensing external stimuli to facilitate energy production for cellular needs. This is possible because mitochondria express some receptors on their membranes that are responsible for their autonomous responses.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Dairy Department, National Research Centre, Dokki, Cairo, Egypt.
The beneficial impact of gut microbiota on human health has encouraged studies on factors modulating it. Among the different factors, diet plays a vital role in this area. Many studies on animals and humans have been concerned with the effects of fermented milk products on gut microbiota and how they relate to health benefits.
View Article and Find Full Text PDFAcetyl-CoA is the main substrate of lipid metabolism and functions as an energy source for plant development. In the cytoplasm, acetyl-CoA is mainly produced by ATP-citrate lyase (ACL), which is composed of ACLA and ACLB subunits. In this study, we isolated the restorer-4 (res4) of the thermosensitive genic male sterile mutant reversible male sterile-2 (rvms-2) in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China.
Acute ischemic stroke (AIS) is a significant brain disease with a high mortality and disability rate. Additional therapies for AIS are urgently needed, and neuroplasticity mechanisms by agents are expected to be neuroprotective for AIS. As a major active component of Salvia miltiorrhiza, salvianolic acid A (SAA) has shown potential for preventing cardiovascular diseases.
View Article and Find Full Text PDFBiofactors
January 2025
Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
Modulating metabolic pathways in activated microglia can alter their phenotype, which is relevant in uncontrolled neuroinflammation as a component of various neurodegenerative diseases. Here, we investigated how pretreatment with agmatine, an endogenous polyamine, affects metabolic changes in an in vitro model of neuroinflammation, a murine microglial BV-2 cell line exposed to lipopolysaccharide (LPS). Hence, we analyzed gene expression using qPCR and protein levels using Western blot and ELISA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!