The true 3-dimensional neointimal thickness distribution in sirolimus-eluting stents was investigated in relation to the shear stress distribution, which was obtained from computational fluid dynamics calculations. Small pits were observed between the stent struts in all patients, and a significant inverse relation between neointimal thickness and shear stress was found, indicating that deeper pits were present in the outside curve of the stented segments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.amjcard.2003.08.017DOI Listing

Publication Analysis

Top Keywords

shear stress
12
distribution sirolimus-eluting
8
sirolimus-eluting stents
8
neointimal thickness
8
stress pattern
4
pattern predicting
4
predicting neointima
4
neointima distribution
4
stents coronary
4
coronary arteries
4

Similar Publications

Discovering non-associated pressure-sensitive plasticity models with EUCLID.

Adv Model Simul Eng Sci

January 2025

Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zürich, 8092 Switzerland.

We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations.

View Article and Find Full Text PDF

Background: This study aims to investigate how A1 segment asymmetry-also known as A1 dominancy-influences the development of the anterior communicating artery aneurysm (AcomA) as it affects hemodynamic conditions within the circle of Willis (COW). Using time-of-flight magnetic resonance angiography (TOF-MRA), the research introduces a novel approach to assessing shear stress in A1 segments to uncover the hemodynamic factors contributing to AcomA formation.

Method: An observational study was conducted over 6 years at a tertiary university hospital's outpatient clinic.

View Article and Find Full Text PDF

The present article focuses on the analysis of the two-phase flow of blood via a stenosed artery under the influence of a pulsatile pressure gradient. The core and plasma regions of flow are modeled using the constitutive relations of Herschel-Bulkley and the Newtonian fluids, respectively. The problem is modeled in a cylindrical coordinate system.

View Article and Find Full Text PDF

This study examines how heart rate (HR) affects hemodynamics in a South African infant with Coarctation of the Aorta. Computed tomography angiography segments aortic coarctation anatomy; Doppler echocardiography derives inlet flow waveforms. Simulations occur at 100, 120, and 160 beats per minute, representing reduced, resting, and elevated HR levels.

View Article and Find Full Text PDF

Background: In adults the Ross procedure provides an excellent alternative to prosthetic valves, but it is underutilised because of concerns about technical complexity, durability, and perceived high late reoperation rates. The inclusion technique stabilizes the aortic root, prevents dilatation, and respects the dynamic root physiology. Long-term outcomes of the Ross procedure with the inclusion cylinder technique (1992-2022) are reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!