A murine model for low molecular weight chemicals: differentiation of respiratory sensitizers (TMA) from contact sensitizers (DNFB).

Toxicology

United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mail Code: B143-04, Research Triangle Park, NC 27711, USA.

Published: December 2003

Exposure to low molecular weight (LMW) chemicals contributes to both dermal and respiratory sensitization and is an important occupational health problem. Our goal was to establish an in vivo murine model for hazard identification of LMW chemicals that have the potential to induce respiratory hypersensitivity (RH). We used a dermal sensitization protocol followed by a respiratory challenge with the evaluation of endpoints typically associated with RH in human disease. Trimellitic anhydride (TMA) was used as a prototype respiratory sensitizer and was compared to the dermal sensitizer; 2,4-dinitrofluorobenzene (DNFB), along with vehicle controls. BALB/c mice were dermally sensitized using two exposure protocols. Mice in both protocols were dermally exposed on experimental days; D-18 and D-17 (abdomen), and D-13 (ear). On D 0 mice received an intratracheal (IT) challenge. The mice in Protocol 2 were abdominally exposed twice with the addition of exposures on D-25 and D-24. Results indicate that mice required the additional dermal sensitization and the IT challenge (Protocol 2) to significantly elevate total IgE in serum and bronchoalveolar lavage fluid (BALF). Additional responses suggestive of RH were seen following Protocol 2, including increases in BALF cell numbers and neutrophils post IT with TMA (but not DNFB). These data suggest that the dermal sensitization and IT challenge followed by evaluation of serum antibodies and lung parameters are a reasonable and logistically feasible approach towards the development of a model for RH responses to LMW chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0300-483x(03)00338-xDOI Listing

Publication Analysis

Top Keywords

lmw chemicals
12
dermal sensitization
12
murine model
8
low molecular
8
molecular weight
8
challenge evaluation
8
sensitization challenge
8
respiratory
5
dermal
5
mice
5

Similar Publications

The immunomodulatory properties of hyaluronan and its derivatives are key to their use in medicine and tissue engineering. In this work we evaluated the capability of soluble tyramine-modified hyaluronan (THA) synthesized from hyaluronan of two molecular weights (low M = 280 kDa and high M = 1640 kDa) for polarization of THP-1 and peripheral blood mononuclear cells (PBMCs)-derived macrophages (MΦs). We demonstrate the polarization effects of the supplemented THA by flow cytometry and bead-based multiplex immunoassay for the THP-1 derived MΦs and by semi-automated image analysis from confocal microscopy, immunofluorescent staining utilizing CD68 and CD206 surface markers, RT-qPCR gene expression analysis, as well as using the enzyme-linked immunosorbent assay (ELISA) for PBMCs-derived MΦs.

View Article and Find Full Text PDF

Geographical impact on the distribution of polycyclic aromatic hydrocarbons (PAHs) in hilly terrain topsoil: A case study at Chongqing, SW, China.

J Hazard Mater

January 2025

Key Laboratory of Sedimentary Basin and Oil and Gas Resources, China Geological Survey, Ministry of Land and Resources & Chengdu Center of Geological Survey, Chengdu 610081, China; College of Materials and Chemistry& Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:

The distribution and transport of polycyclic aromatic hydrocarbons (PAHs) in urban environments are influenced by both anthropogenic sources and natural landscape features. While previous research has primarily focused on human activities as drivers of PAH pollution, the role of terrain-especially in cities with complex topographies-remains underexplored. To investigate the effect of terrain features on PAH distribution and transport, we analyzed topsoil samples evenly distributed in Chongqing, a city with hilly terrain (elevation: 48-2300 m).

View Article and Find Full Text PDF

Investigating Oil Entrance from Hendijan Oil Field in the Northwest of the Persian Gulf Using Chemical Fingerprinting.

Arch Environ Contam Toxicol

December 2024

School of Engineering and Architecture, Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Terracini 28, 40131, Bologna, Italy.

Concerning the entrance of oil into the Persian Gulf due to the presence of oil fields in this ecosystem, a wide investigation was carried out in 2017 to evaluate the hydrocarbons source identification and chemical fingerprinting. To this end, surface sediments were collected from the Persian Gulf. In the laboratory, compounds (n-alkanes, PAHs, hopane and sterane) were then extracted with a Soxhlet system and two steps of chromatographic columns and analyzed using a GC-MS instrument.

View Article and Find Full Text PDF

Enzymatic hydrolysis processing of soybean meal altered its structure and protein digestive dynamics in pigs.

Front Vet Sci

November 2024

Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.

Introduction: The study evaluated the enzymatic hydrolysis processing on physicochemical properties and protein digestive dynamics of soybean meal (SBM), as well as the relationship between protein secondary structure and digestive parameters was established.

Methods: Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were employed to analyze the microstructure and protein structure of the SBM and enzymatic hydrolysis processed soybean meal (ESBM). SBM and ESBM were incubated with pepsin at pH 3.

View Article and Find Full Text PDF

Controlling the minimum gelation concentration (MGC) of low molecular weight (LMW) hydrogelators is a key for modulating gel properties, such as mechanical strength, viscoelasticity, and stability, which are crucial for applications ranging from drug delivery to tissue engineering. However, tweaking the MGC under specific conditions, such as pH and/or temperature, poses a considerable challenge. Herein, we varied the ionic strength of buffer solutions using NaCl for several LMW hydrogelators, including Fmoc-Phe, Fmoc-Tyr, Fmoc-Trp, Fmoc-Met, and Fmoc-Cha, and assessed their gelation efficiency at pH 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!