Structure and assembly of the yeast V-ATPase.

J Bioenerg Biomembr

Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA.

Published: August 2003

The yeast V-ATPase belongs to a family of V-type ATPases present in all eucaryotic organisms. In Saccharomyces cerevisiae the V-ATPase is localized to the membrane of the vacuole as well as the Golgi complex and endosomes. The V-ATPase brings about the acidification of these organelles by the transport of protons coupled to the hydrolysis of ATP. In yeast, the V-ATPase is composed of 13 subunits consisting of a catalytic V1 domain of peripherally associated proteins and a proton-translocating V0 domain of integral membrane proteins. The regulatory subunit, Vma13p, was the first V-ATPase subunit to have its crystal structure determined. In addition to proteins forming the functional V-ATPase complex, three ER-localized proteins facilitate the assembly of the V0 subunits following their translation and insertion into the membrane of the ER. Homologues of the Vma21p assembly factor have been identified in many higher eukaryotes supporting a ubiquitous assembly pathway for this important enzyme complex.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1025772730586DOI Listing

Publication Analysis

Top Keywords

yeast v-atpase
12
v-atpase
7
structure assembly
4
assembly yeast
4
v-atpase yeast
4
v-atpase belongs
4
belongs family
4
family v-type
4
v-type atpases
4
atpases eucaryotic
4

Similar Publications

The vacuolar ATPase (V-ATPase; V V ) is a multi-subunit rotary nanomotor proton pump that acidifies organelles in virtually all eukaryotic cells, and extracellular spaces in some specialized tissues of higher organisms. Evidence suggests that metastatic breast cancers mislocalize V-ATPase to the plasma membrane to promote cell survival and facilitate metastasis, making the V-ATPase a potential drug target. We have generated a library of camelid single-domain antibodies (Nanobodies; Nbs) against lipid-nanodisc reconstituted yeast V-ATPase V proton channel subcomplex.

View Article and Find Full Text PDF

Declines in lysosomal acidification and function with aging are observed in organisms ranging from yeast to humans. V-ATPases play a central role in organelle acidification, and V-ATPase activity is regulated by reversible disassembly in many different settings. Using the yeast Saccharomyces cerevisiae as a replicative aging model, we demonstrate that V-ATPases disassemble into their V and V subcomplexes in aging cells, with release of V subunit C (Vma5) from the lysosome-like vacuole into the cytosol.

View Article and Find Full Text PDF

Structure of yeast RAVE bound to a partial V complex.

Proc Natl Acad Sci U S A

December 2024

Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.

Vacuolar-type ATPases (V-ATPases) are membrane-embedded proton pumps that acidify intracellular compartments in almost all eukaryotic cells. Homologous with ATP synthases, these multisubunit enzymes consist of a soluble catalytic V subcomplex and a membrane-embedded proton-translocating V subcomplex. The V and V subcomplexes can undergo reversible dissociation to regulate proton pumping, with reassociation of V and V requiring the protein complex known as RAVE (regulator of the ATPase of vacuoles and endosomes).

View Article and Find Full Text PDF
Article Synopsis
  • SNARE-mediated membrane fusion is influenced by the lipid composition of bilayers, affecting how proteins interact with lipids and the membranes' physical properties, like curvature.
  • Research on yeast vacuole fusion revealed that certain lysophospholipids, specifically lysophosphatidylcholine (LPC), can inhibit fusion based on their acyl chain length and saturation.
  • The study also showed that head group size is crucial in blocking fusion, with different lysolipids having varying effects on calcium transport and vacuole acidification.
View Article and Find Full Text PDF

The vacuolar H-ATPase (V-ATPase) plays a crucial role in facilitating nutrient ions storage in vacuoles, whereas its direct impact on vacuolar phosphate (Pi) accumulation has not been fully elucidated. Previous research revealed that the absence of VPT1 and VPT3, two major vacuolar Pi influx transporters, significantly affected vacuolar Pi storage. This study shows that disrupting V-ATPase function could mimic the vpt1 vpt3 mutant phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!