We studied major histocompatibility complex class II-dependent presentation of two T cell epitopes delivered as synthetic peptides by fixed macrophages. Treatment of bone marrow macrophages with inhibitors of proteinases of the metallo-, aspartic and serine proteinase families enhanced presentation of peptides, indicating that several enzyme families participate in destructive antigen processing of exogenous peptides. High performance liquid chromatography and mass spectrometry analysis demonstrated the presence of peptide fragments in macrophage supernatants, and permitted identification of the cleavage sites which confirmed the enzyme families involved. Peptide fragments were shown to be competitive inhibitors of presentation of the full-length peptide to CD4 T cells by fixed and live macrophages. The results indicate that several classes of proteinases can modulate antigen presentation by at least two mechanisms: (1) degradation of extracellular oligopeptides and (2) generation of natural peptide ligands that block antigen presentation to CD4 T cells. The generation of inhibitory natural peptide ligands is a new mechanism of immunoregulation which could operate during the induction of T cell responses in a variety of situations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200324461DOI Listing

Publication Analysis

Top Keywords

major histocompatibility
8
histocompatibility complex
8
complex class
8
enzyme families
8
peptide fragments
8
cd4 cells
8
antigen presentation
8
natural peptide
8
peptide ligands
8
presentation
6

Similar Publications

Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease with demyelinating inflammatory characteristics. It is the most common nontraumatic and disabling disease affecting young adults. The incidence and prevalence of MS have been increasing.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting the brain and spinal cord. Genetic studies have identified many risk loci, that were thought to primarily impact immune cells and microglia. Here, we performed a multi-ancestry genome-wide association study with 20,831 MS and 729,220 control participants, identifying 236 susceptibility variants outside the Major Histocompatibility Complex, including four novel loci.

View Article and Find Full Text PDF

The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is an established treatment for selected patients with inborn errors of metabolism. In this first report from the PDWP-SBTMO, we included 105 patients transplanted between 1988 and 2021 across six Brazilian HSCT centers. The most prevalent diseases were X-linked adrenoleukodystrophy (n = 61) and mucopolysaccharidosis (type I n = 20; type II n = 10), with a median age at HSCT of 8.

View Article and Find Full Text PDF

Unraveling the dual role of bilirubin in neurological Diseases: A Comprehensive exploration of its neuroprotective and neurotoxic effects.

Brain Res

January 2025

Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India. Electronic address:

Neurodegenerative disorders are characterized by a progressive loss of neurons, causing substantial deficits in motor and cognitive functioning. Bilirubin is a yellow by-product of heme, existing in two primary isoforms namely unconjugated and conjugated, while initially produced unconjugated isomer is lipophilic and cytotoxic in nature. At physiological levels, bilirubin has an important role in brain function by acting as a powerful antioxidant, preventing brain tissues from oxidative damage by eliminating reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!