In the last few years blood glucose meters have been developed allowing glucose measurements in capillary blood samples collected at sites other than the fingertips. The main reason for establishing this so-called alternate site testing (AST) was to sample blood from locations with reduced pain perception. It is well known that capillary blood glucose is closely correlated to systemic (i.e., arterial) glucose levels and that under steady-state conditions, glucose values measured in blood samples collected from alternate sites are virtually identical to those collected from the fingertip. However, during rapid changes in blood glucose levels, glucose concentrations in capillary blood samples from the fingertips can differ considerably in both domains (time and concentration) from those determined in capillary blood from alternate sites (i.e., the so-called AST phenomenon). Such differences can have serious clinical consequences (e.g., risky delays in hypoglycemia detection). There is evidence that all skin sites exhibiting a reduced blood flow (in comparison with the fingertip) within the superficial skin layers are prone to this AST phenomenon. Nearly all glucose sensors having been developed so far or being currently under development measure glucose levels at alternate sites and also in another compartment [e.g., interstitial fluid (ISF)] than blood. So, in principle they might be prone to an AST-like phenomenon (i.e., rapid changes in systemic blood glucose levels may also result in delayed ISF glucose readings). Our knowledge about the impact of an AST-like phenomenon on the performance of glucose monitoring systems is presently very limited. Glucose kinetics in the different compartments during dynamic systemic blood glucose changes have not been fully elucidated yet. If an AST-like phenomenon plays a role with glucose sensors should therefore be studied. Depending on the measurement technology used for the individual type of glucose monitoring system probably this phenomenon has a variable impact on the results obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1089/152091503322527030DOI Listing

Publication Analysis

Top Keywords

blood glucose
24
glucose
19
capillary blood
16
glucose levels
16
blood
13
glucose sensors
12
blood samples
12
alternate sites
12
ast-like phenomenon
12
alternate site
8

Similar Publications

Determinants of cerebrospinal fluid leakage in a large cohort of macroprolactinomas.

Ann Endocrinol (Paris)

January 2025

Assistance Publique Hôpitaux de Paris, Pituitary Unit, Pitié-Salpêtrière Hospital, 75013 Paris, France. Electronic address:

Background: Non-functional adrenal incidentaloma (NFAI) is associated with increased risk of adverse cardiometabolic outcome. Identifying predictors of atherosclerotic cardiovascular disease (ASCVD) may enable more appropriate management strategies in patients with NFAI. We aimed to investigate body composition parameters and ASCVD risk in patients with NFAI.

View Article and Find Full Text PDF

Saffron has been traditionally used for various health benefits, but its effects on biomarkers of liver function, kidney function, and blood pressure in diabetes are not well understood. This meta-analysis aims to evaluate the impact of saffron supplementation on systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), liver enzymes (ALT, AST), and kidney function markers (BUN, creatinine) in patients with diabetes and prediabetes. A comprehensive search was conducted across multiple databases to identify randomized controlled trials (RCTs) assessing saffron/crocin supplementation on glycemic control, hepatic and renal function, and blood pressure regulation in patients with diabetes and prediabetes.

View Article and Find Full Text PDF

Phenolic acid-rich fraction from Anisopus mannii (PhAM) contains abundance of ferulic acid, gallic acid, protocatechuic acid, and syringic acid. Among other glycolytic enzymes, in vitro, PhAM counteracted the binding of sodium orthovanadate to phosphofructokinase 1 (PFK-1), improving its activities. In a rat model of diet-induced diabetes, PhAM monotherapy reduced HbA1c by an average of 0.

View Article and Find Full Text PDF

Finerenone and new-onset diabetes in heart failure: a prespecified analysis of the FINEARTS-HF trial.

Lancet Diabetes Endocrinol

January 2025

British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, UK. Electronic address:

Background: Data on the effect of mineralocorticoid receptor antagonist therapy on HbA levels and new-onset diabetes are conflicting. We aimed to examine the effect of oral finerenone, compared with placebo, on incident diabetes in the Finerenone Trial to Investigate Efficacy and Safety Superior to Placebo in Patients with Heart Failure (FINEARTS-HF) trial.

Methods: In this randomised, double-blind, placebo-controlled trial, 6001 participants with heart failure with New York Heart Association functional class II-IV, left ventricular ejection fraction 40% or higher, evidence of structural heart disease, and elevated N-terminal pro-B-type natriuretic peptide levels were randomly assigned to finerenone or placebo, administered orally.

View Article and Find Full Text PDF

Quantifying Plasmodium vivax radical cure efficacy: a modelling study integrating clinical trial data and transmission dynamics.

Lancet Infect Dis

January 2025

Institut Pasteur, Université Paris Cité, G5 Épidémiologie et Analyse des Maladies Infectieuses, Paris, France. Electronic address:

Background: Plasmodium vivax forms dormant liver stages (hypnozoites) that can reactivate weeks to months after primary infection. Radical cure requires a combination of antimalarial drugs to kill both the blood-stage and liver-stage parasites. Hypnozoiticidal efficacy of the liver-stage drugs primaquine and tafenoquine cannot be estimated directly because hypnozoites are undetectable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!