Aim: Optimization of enrichment media and selective agars for the detection of Escherichia coli O26 and O111 from minced beef.
Methods And Results: This study compared a number of different enrichment conditions and plating media for the recovery of E. coli O26 and E. coli O111 from minced beef. The optimum enrichment conditions for E. coli O26 was observed in beef samples enriched at 41.5 degrees C in tryptone soya broth supplemented with cefixime (50 microg l(-1)), vancomycin (40 mg l(-1)) and potassium tellurite (2.5 mg l(-1)). Similar enrichment conditions were optimal for E. coli O111 with the omission of potassium tellurite. The optimum agar for recovery of E. coli O26 and giving the most effective suppression of contaminants was MacConkey agar [lactose replaced by rhamnose (20 g l(-1))] and supplemented with cefixime (50 microg ml(-1)) and potassium tellurite (2.5 mg l(-1)). Optimum recovery of E. coli O111 was on chromocult agar, supplemented with cefixime (50 microg ml(-1)), cefsulodin (5 mg l(-1)) and vancomycin (8 mg l(-1)). Minced beef samples were inoculated with a number of strains of E. coli O26 (n=9) and O111 (n=8), and the developed enrichment and plating methods, used in combination with immunomagnetic separation, were shown to be an effective method for the recovery of all strains.
Conclusions: Routine cultural methods for the recovery of E. coli O26 and O111 from minced beef are described.
Significance And Impact Of The Study: The optimized enrichment and plating procedure described for the recovery of E. coli O111 and O26 from meat can be used to extend research on these emerging pathogens in beef.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2672.2003.02065.x | DOI Listing |
Microb Pathog
January 2025
Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai university of Veterinary and Animal Sciences, Hisar-125004, India. Electronic address:
Bacterial diseases alone or in combination with other pathogens lead to significant economic losses in poultry globally including India. One of these diseases is avian colibacillosis which is caused by avian pathogenic Escherichia coli (APEC). The present study sought to isolate and characterize using in vivo and in vitro assays E.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Field Service - South East and London, UK Health Security Agency, London, UK.
Shiga toxin-producing (STEC) infections are of public health concern as STEC can cause large national foodborne outbreaks of severe gastrointestinal disease, particularly in the young and elderly. In recent years, the implementation of PCR by diagnostic microbiology laboratories has improved the detection of STEC, and there has been an increase in notifications of cases of non-O157 STEC. However, the extent this increase in caseload can be attributed to the improved detection by PCR, or a true increase in non-O157 STEC infections, is unknown.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China.
Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA.
Lipopolysaccharide (LPS) is the primary pathogenic factor in Gram-negative sepsis. While the presence of LPS in the bloodstream during infection is associated with disseminated intravascular coagulation, the mechanistic link between LPS and blood coagulation activation remains ill-defined. The contact pathway of coagulation-a series of biochemical reactions that initiates blood clotting when plasma factors XII (FXII) and XI (FXI), prekallikrein (PK), and high molecular weight kininogen interact with anionic surfaces-has been shown to be activated in Gram-negative septic patients.
View Article and Find Full Text PDFFood Res Int
November 2024
Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!