The transcription factor PDX-1 (pancreatic and duodenal homeobox-1) is essential for pancreatic development and the maintainence of expression of islet beta-cell-specific genes. In an previous study [Rafiq, Kennedy and Rutter (1998) J. Biol. Chem. 273, 23241-23247] we demonstrated that PDX-1 may be activated at elevated glucose concentrations by translocation from undefined binding sites in the cytosol and nuclear membrane into the nucleoplasm. In the present study, we show that PDX-1 interacts directly and specifically in vitro with the nuclear import receptor family member, importin beta1, and that this interaction is mediated by the PDX-1 homeodomain (amino acids 146-206). Demonstrating the functional importance of the PDX-1-importin beta1 interaction, microinjection of MIN6 beta-cells with anti-(importin beta1) antibodies blocked both the nuclear translocation of PDX-1, and the activation by glucose (30 mM versus 3 mM) of the pre-proinsulin promoter. However, treatment with extracts from pancreatic islets incubated at either low or high glucose concentrations had no impact on the ability of PDX-1 to interact with importin beta1 in vitro. Furthermore, importin beta1 also interacted with SREBP1c (sterol-regulatory-element-binding protein 1c) in vitro, and microinjection of importin beta1 antibodies blocked the activation by glucose of SREBP1c target genes. Since the subcellular distribution of SREBP1c is unaffected by glucose, these findings suggest that a redistribution of importin beta1 is unlikely to explain the glucose-stimulated nuclear uptake of PDX-1. Instead, we conclude that the uptake of PDX-1 into the nucleoplasm, as glucose concentrations increase, may be mediated by release of the factor both from sites of retention in the cytosol and from non-productive complexes with importin beta1 at the nuclear membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223942PMC
http://dx.doi.org/10.1042/BJ20031549DOI Listing

Publication Analysis

Top Keywords

importin beta1
28
glucose concentrations
12
glucose-stimulated nuclear
8
nuclear import
8
pancreatic duodenal
8
duodenal homeobox-1
8
pdx-1
8
nuclear membrane
8
beta1
8
beta1 interaction
8

Similar Publications

Background: Osimertinib has emerged as a critical element in the treatment landscape following recent clinical trials. Further investigation into the mechanisms driving resistance to Osimertinib is necessary to address the restricted treatment options and survival advantages that are compromised by resistance in patients with EGFR-mutated lung adenocarcinoma (LUAD).

Methods: Spatial transcriptomic and proteomic analyses were utilized to investigate the mechanisms of Osimertinib resistance.

View Article and Find Full Text PDF

Amidst the ongoing global challenge of the SARS-CoV-2 pandemic, the quest for effective antiviral medications remains paramount. This comprehensive review delves into the dynamic landscape of FDA-approved medications repurposed for COVID-19, categorized as antiviral and non-antiviral agents. Our focus extends beyond conventional narratives, encompassing vaccination targets, repurposing efficacy, clinical studies, innovative treatment modalities, and future outlooks.

View Article and Find Full Text PDF

KPNB1-ATF4 induces BNIP3-dependent mitophagy to drive odontoblastic differentiation in dental pulp stem cells.

Cell Mol Biol Lett

November 2024

Department of Endodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, 117 Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, People's Republic of China.

Background: Differentiating dental pulp stem cells (DPSCs) into odontoblasts is a critical process for tooth self-repair and dentine‒pulp engineering strategies in the clinic. However, the mechanism underlying the regulation of DPSC odontoblastic differentiation remains largely unknown. Here, we demonstrated that BCL-2 interacting protein 3 (BNIP3)-dependent mitophagy is associated with importin subunit beta-1 (KPNB1)-activating transcription factor 4 (ATF4), which promotes DPSC odontoblastic differentiation.

View Article and Find Full Text PDF

Perturbation of mammary epithelial cell apicobasal polarity by RHBDF1-facilitated nuclear translocation of PKCζ.

Biol Res

November 2024

State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, The Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.

Background: The establishment of apicobasal polarity in epithelial cells is of critical importance in morphogenesis of mammary gland and other secretive gland tissues. The demise of the polarity is a critical step in early stages of tumorigenesis such as in breast ductal carcinoma in situ. The underlying molecular mechanism thus warrants in-depth investigations.

View Article and Find Full Text PDF

Ibetazol, a novel inhibitor of importin β1-mediated nuclear import.

Commun Biol

November 2024

KU Leuven Department of Microbiology, Immunology and Transplantation, Molecular Genetics and Therapeutics in Virology and Oncology Research Group, Rega Institute, Leuven, Belgium.

Nucleocytoplasmatic transport plays an essential role in eukaryotic cell homeostasis and is mediated by karyopherins. Importin β1 (KPNB1) and its adaptor protein importin α1 (KPNA2) are the best-characterized karyopherins that effect nuclear import. Here, we identify a novel small-molecule inhibitor of the importin β1-mediated nuclear import.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!