Several synthetic approaches for the preparation of double metal cyanide (DMC) derivatives of iron(II) and zinc(II) are described. These include (1) metathesis reactions of ZnCl(2) or ZnI(2) with KCpFe(CN)(2)CO in aqueous solution, (2) reactions of KCpFe(CN)(2)CO and its phosphine-substituted analogues with Zn(CH(3)CN)(4)(BF(4))(2) and subsequent displacement of acetonitrile at the zinc centers by the addition of a neutral (phosphine) or anionic (phenoxide) ligand, and (3) reactions of the protonated HCpFe(CN)(2)(phosphine) complexes with Zn(N(SiMe(3))(2))(2), followed by the addition of phenols. All structures are based on a diamond-shaped planar arrangement of the Fe(2)(CN)(4)Zn(2) core with various appended ligands at the metal sites. Although attempts to replace the iodide ligands in [CpFe(mu-CN)(2)PPh(3)ZnI(THF)](2) with acetate using silver acetate failed, two novel cationic mixed-metal cyanide salts based on the [CpFe(PPh(3))(mu-CN)(2)Zn(NC(5)H(5))](2)(2+) framework were isolated from pyridine solution and their structures were defined by X-ray crystallography. The anionic ligand bound to zinc in these derivatives, which serve as an anionic polymerization initiator, was shown to be central to the catalytic copolymerization reaction of CO(2)/epoxide to provide polycarbonates and cyclic carbonates. The structurally stabilized phosphine-strapped complexes [CpFe(mu-CN)(2)Zn(X)THF](2)(mu-dppp), where X = I or phenolate, were shown to be thermally stable under the conditions (80 degrees C) of the copolymerization reaction by in situ infrared spectroscopy. Both of these derivatives were proposed to serve as mimics for the heterogeneous DMC catalysts in the patent literature, with the derivative where the initiator is a phenolate being more active for the production of polycarbonates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic0347900 | DOI Listing |
Sci Rep
January 2025
Department of Physics, College of Science, University of Thi-Qar, Nasiriya, Iraq.
This work studies the generation of the orbital angular momentum (OAM) beam in the double quantum dot-metal nanoparticle (DQD-MNP) system under the application of the OAM beam. First, an analytical model is derived to attain the relations of probe and generated fields as a distance function in the DQD-MNP system under OAM applied field and spontaneously generated coherence (SGC) components. The calculation here is of material property; it differs from others by calculating energy states of the DQDs and the computation of the transition momenta between quantum dot (QD)-QD and QD-wetting layer (WL) transitions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
Metal-nonaqueous solution interfaces, a key to many electrochemical technologies, including lithium metal batteries, are much less understood than their aqueous counterparts. Herein, on several metal-nonaqueous solution interfaces, we observe capacitances that are 2 orders of magnitude lower than the usual double-layer capacitance. Combining electrochemical impedance spectroscopy, atomic force microscopy, and physical modeling, we ascribe the ultralow capacitance to an interfacial layer of 10-100 nm above the metal surface.
View Article and Find Full Text PDFAnal Chem
January 2025
Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China.
Early and portable detection of pathogenic bacteria is crucial for ensuring food safety, monitoring product quality, and tracing the sources of bacterial infections. Moving beyond traditional plate-culture counting methods, the analysis of active bacterial components offers a rapid means of quantifying bacteria. Here, metal-organic framework (MOF)-derived NiCo-layered double hydroxide nanosheets (LDHs), synthesized via the Kirkendall effect, were employed as highly effective oxidase mimics to generate reactive oxygen species (ROS).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFRSC Adv
January 2025
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
The oxidative dehydrogenation of propane with CO (CO-ODP) is a green industrial process for producing propene. Cerium oxide-supported platinum-based (Pt/CeO) catalysts exhibit remarkable reactivity toward propane and CO due to the unique delicate balance of C-H and C[double bond, length as m-dash]O bond activation. However, the simultaneous activation and cleavage of C-H, C-C, and C-O bonds on Pt/CeO-based catalysts may substantially impede the selective activation of C-H bonds during the CO-ODP process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!