A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative assessment of multiresponse regression methods for predicting the mechanisms of toxic action of phenols. | LitMetric

Comparative assessment of multiresponse regression methods for predicting the mechanisms of toxic action of phenols.

J Chem Inf Comput Sci

Department of Statistics and Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996-2200, USA.

Published: October 2004

The use of regression methods for classifying and predicting the mechanisms of toxic action of phenols was investigated in this study. Multiresponse regression was conducted using a total of six linear and nonlinear regression methods: simple linear regression (LinReg), logistic regression (LogReg), generalized additive model (GAM), locally weighted regression scatter plot smoothing (LOWESS), multivariate adaptive regression splines (MARS), and projection pursuit regression (PPR). A database containing phenols acting by four mechanisms (polar narcosis, weak acid respiratory uncoupling, proelectrophilicity, and soft electrophilicity) was used to assess the performances of the six regression methods in the multiresponse regression approach. For comparison purposes, traditional linear discriminant analysis (LDA) was also conducted as a baseline method to study the potential improvement of prediction accuracy by the multiresponse regression approach. Results showed that compared to LDA, the overall mechanism prediction error rate could be reduced to below 10% by multiresponse regression based on PPR. In addition to prediction accuracy, interpretability of the resultant models was discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci034092yDOI Listing

Publication Analysis

Top Keywords

multiresponse regression
20
regression methods
16
regression
13
predicting mechanisms
8
mechanisms toxic
8
toxic action
8
action phenols
8
regression approach
8
prediction accuracy
8
multiresponse
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!