Phenotypic variation in growth trajectories in the Arctic charr Salvelinus alpinus.

J Evol Biol

Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.

Published: July 2003

AI Article Synopsis

  • The study focused on Arctic charr to analyze growth patterns in animals with indeterminate growth, which have been less studied compared to those with determinate growth.
  • Results indicated that individual growth trajectories showed little variation, with smaller individuals early in life remaining smaller after 2.5 years.
  • The findings suggest that social dynamics, particularly size-related dominance behavior, may conceal genuine variations in growth, indicating that social interactions can significantly influence evolutionary traits not directly related to behavior.

Article Abstract

Animals with determinate growth have shown little variation in individual growth patterns, but similar analyses for animals with indeterminate growth have been lacking. We analysed the amount of phenotypic variation in growth patterns across ages among individuals of a hatchery-based population of Arctic charr, Salvelinus alpinus, Salmonidae, using the infinite-dimensional model and including the effects of group size structure. There was little phenotypic variation in growth trajectories: individuals that were small (in relation to the mean) early in life were among the smallest 2.5 years later. If the genetic variation reflects phenotypic variation, not much evolutionary change can be expected. Our results show that there are ecological conditions that determine the strong covariation of size across ages, most likely size-related dominance behaviour, which can mask the true variation of growth patterns. Thus, social interactions can have strong evolutionary effects on traits not directly involved in the behavioural interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1420-9101.2003.00566.xDOI Listing

Publication Analysis

Top Keywords

phenotypic variation
16
variation growth
16
growth patterns
12
growth trajectories
8
arctic charr
8
charr salvelinus
8
salvelinus alpinus
8
growth
7
variation
6
phenotypic
4

Similar Publications

Type 4 pili (T4P) are multifunctional filaments involved in adhesion, surface motility, biofilm formation, and horizontal gene transfer. These extracellular polymers are surface-exposed and, therefore, act as antigens. The human pathogen Neisseria gonorrhoeae uses pilin antigenic variation to escape immune surveillance, yet it is unclear how antigenic variation impacts most other functions of T4P.

View Article and Find Full Text PDF

Decoding the genetic blueprint: regulation of key agricultural traits in sorghum.

Adv Biotechnol (Singap)

September 2024

School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, P. R. China.

Sorghum, the fifth most important crop globally, thrives in challenging environments such as arid, saline-alkaline, and infertile regions. This remarkable crop, one of the earliest crops domesticated by humans, offers high biomass and stress-specific properties that render it suitable for a variety of uses including food, feed, bioenergy, and biomaterials. What's truly exciting is the extensive phenotypic variation in sorghum, particularly in traits related to growth, development, and stress resistance.

View Article and Find Full Text PDF

Understanding interspecific introgressive hybridisation and the biological significance of introgressed variation remains an important goal in population genomics. European (Anguilla anguilla) and American eel (A. rostrata) represent a remarkable case of hybridisation.

View Article and Find Full Text PDF

Population variability across geographical ranges: perspectives and challenges.

Proc Biol Sci

January 2025

Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.

Populations fluctuate over time and across geographical space, and understanding how different factors contribute to population variability is a central goal in population ecology. There is a particular interest in identifying trends of population variability within geographical ranges as population densities of species can fluctuate substantially across geographical space. A common assumption is that populations vary more near species geographical range edges because of unsuitable environments and higher vulnerability to environmental variability in these areas.

View Article and Find Full Text PDF

To forecast how fast populations can adapt to climate change, it is essential to determine the evolutionary potential of different life-cycle stages under selection. In birds, timing of gonadal development and moult are primarily regulated by photoperiod, while laying date is highly phenotypically plastic to temperature. We tested whether geographic variation in phenology of these life-cycle events between populations of great tits () has a genetic basis, indicating that contemporary genetic adaptation is possible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!