Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Exposure to ultraviolet-B radiation impairs cellular immune responses. This immunosuppression seems to be associated with Langerhans cell migration. DNA damage appears to play a key role because enhanced nucleotide excision repair, a pathway essential for elimination of ultraviolet-B-induced DNA lesions, strongly counteracts immunosuppression. To determine the effect of DNA repair on ultraviolet-B-induced local immunosuppression and Langerhans cell disappearance, three mouse strains carrying different defects in nucleotide excision repair were compared. XPC mice, which were defective in global genome repair, were as sensitive to ultraviolet-B-induced local suppression of contact hypersensitivity to picryl chloride as their wild-type littermates. CSB mice, defective in transcription-coupled repair, were far more sensitive for immunosuppression as were XPA mice, defective in both transcription-coupled repair and global genome repair. Only a moderate depletion of Langerhans cells was observed in XPC mice and wild-type littermates. Ultraviolet-B-induced Langerhans cell depletion was enhanced in CSB and XPA mice. Hence, the major conclusion is that local immunosuppression is only affected when transcription-coupled DNA repair is impaired. Furthermore, a defect in transcription-coupled repair was linked to enhanced ultraviolet-B-induced Langerhans cell depletion. In combination with earlier experiments, it can be concluded that Langerhans cell disappearance is related to ultraviolet-B-induced local but not to systemic immunosuppression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1523-1747.2003.12476.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!