A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Plant reproductive development during spaceflight. | LitMetric

Plant reproductive development during spaceflight.

Adv Space Biol Med

Department of Plant Science, University of Connecticut, 1376 Storrs Road, Unit 4067, Storrs, CT 06269, USA.

Published: December 2003

Reproductive development in microgravity has now been studied in a variety of plants; Arabidopsis, Brassica, and Triticum have been especially well studied. Earlier indications that gravity might be required for some stage of reproductive development have now been refuted. Nevertheless, the spaceflight environment presents many unique challenges that have often compromised the ability of plants to reproduce. These include limitations in hardware design to compensate for the unique environmental characteristics of microgravity, especially absence of convective air movement. Pollen development has been shown to be sensitive to high concentrations of ethylene prevailing on various orbital platforms. Barring these gross environmental problems, androecium and gynoecium development occur normally in microgravity, in that functional propagules are produced. Nonetheless, qualitative changes in anther and pistil development have been shown, and significant qualitative changes occur in storage reserve deposition during seed development. Apart from the intrinsic biological importance of these results, consequences of diminished seed quality when plants are grown in the absence of gravity will detract from the utility of plant-based life support systems. By understanding gravity's role in determining the microenvironments that prevail during reproductive development, counter-measures to these obstacles can be found, while at the same time providing basic knowledge that will have broader agricultural significance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1569-2574(03)09001-4DOI Listing

Publication Analysis

Top Keywords

reproductive development
16
development
8
qualitative changes
8
plant reproductive
4
development spaceflight
4
spaceflight reproductive
4
development microgravity
4
microgravity studied
4
studied variety
4
variety plants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!