Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reproductive development in microgravity has now been studied in a variety of plants; Arabidopsis, Brassica, and Triticum have been especially well studied. Earlier indications that gravity might be required for some stage of reproductive development have now been refuted. Nevertheless, the spaceflight environment presents many unique challenges that have often compromised the ability of plants to reproduce. These include limitations in hardware design to compensate for the unique environmental characteristics of microgravity, especially absence of convective air movement. Pollen development has been shown to be sensitive to high concentrations of ethylene prevailing on various orbital platforms. Barring these gross environmental problems, androecium and gynoecium development occur normally in microgravity, in that functional propagules are produced. Nonetheless, qualitative changes in anther and pistil development have been shown, and significant qualitative changes occur in storage reserve deposition during seed development. Apart from the intrinsic biological importance of these results, consequences of diminished seed quality when plants are grown in the absence of gravity will detract from the utility of plant-based life support systems. By understanding gravity's role in determining the microenvironments that prevail during reproductive development, counter-measures to these obstacles can be found, while at the same time providing basic knowledge that will have broader agricultural significance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1569-2574(03)09001-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!