Pharmacogenetics goes genomic.

Nat Rev Genet

Department of Biology (Galton Laboratory), University College London, The Darwin Building, Gower Street, London WC1E 6BT, UK.

Published: December 2003

Most people in the developed world will sooner or later be given prescription drugs to treat common diseases or to reduce the risk of getting them. Almost everyone who takes medicines will, at some stage, encounter those that do not work as well as they do in other people or even that cause an adverse reaction. Pharmacogenetics seeks to reduce the variation in how people respond to medicines by tailoring therapy to individual genetic make-up. It seems increasingly likely that investment in this field might be the most effective strategy for rapidly delivering the public health benefits that are promised by the Human Genome Project and related endeavours.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrg1229DOI Listing

Publication Analysis

Top Keywords

pharmacogenetics genomic
4
genomic people
4
people developed
4
developed will
4
will sooner
4
sooner prescription
4
prescription drugs
4
drugs treat
4
treat common
4
common diseases
4

Similar Publications

Genetic polymorphism of the dihydropyrimidine dehydrogenase gene () is responsible for the variability found in the metabolism of fluoropyrimidines such as 5-fluorouracil (5-FU), capecitabine, or tegafur. The genotype is linked to variability in enzyme activity, 5-FU elimination, and toxicity. Approximately 10-40% of patients treated with fluoropyrimidines develop severe toxicity.

View Article and Find Full Text PDF

Pharmacogenetics is a branch of genomic medicine aiming to personalize drug prescription guidelines based on individual genetic information. This concept might lead to a reduction in adverse drug reactions, which place a heavy burden on individual patients' health and the economy of the healthcare system. The aim of this study was to present insights gained from the pharmacogenetics-based clustering of over 500 patients from the Croatian population.

View Article and Find Full Text PDF

Pharmacogenetics: Opportunities for the Research Program and Other Large Data Sets to Advance the Field.

Annu Rev Pharmacol Toxicol

January 2025

Clinical and Translational Science Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio, USA.

Pharmacogenetic variation is common and an established driver of response for many drugs. There has been tremendous progress in pharmacogenetics knowledge over the last 30 years and in clinical implementation of that knowledge over the last 15 years. But there have also been many examples where translation has stalled because of the lack of available data sets for discovery or validation research.

View Article and Find Full Text PDF

Introduction: Genetic load influences the therapeutic response to conventional drugs in Alzheimer's disease (AD). Pharmacogenetics (PGx) is the best option to reduce drug-drug interactions and adverse drug reactions in patients undergoing polypharmacy regimens. However, there are important limitations that make it difficult to incorporate pharmacogenetics into routine clinical practice.

View Article and Find Full Text PDF

Integrating pharmacogenomics and cheminformatics with diverse disease phenotypes for cell type-guided drug discovery.

Genome Med

January 2025

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.

Background: Large-scale pharmacogenomic resources, such as the Connectivity Map (CMap), have greatly assisted computational drug discovery. However, despite their widespread use, CMap-based methods have thus far been agnostic to the biological activity of drugs as well as to the genomic effects of drugs in multiple disease contexts. Here, we present a network-based statistical approach, Pathopticon, that uses CMap to build cell type-specific gene-drug perturbation networks and integrates these networks with cheminformatic data and diverse disease phenotypes to prioritize drugs in a cell type-dependent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!