Three distinct classes of drugs: dopaminergic agonists (such as D-amphetamine), serotonergic agonists (such as LSD), and glutamatergic antagonists (such as PCP) all induce psychotomimetic states in experimental animals that closely resemble schizophrenia symptoms in humans. Here we implicate a common signaling pathway in mediating these effects. In this pathway, dopamine- and an adenosine 3',5'-monophosphate (cAMP)-regulated phospho-protein of 32 kilodaltons (DARPP-32) is phosphorylated or dephosphorylated at three sites, in a pattern predicted to cause a synergistic inhibition of protein phosphatase-1 and concomitant regulation of its downstream effector proteins glycogen synthesis kinase-3 (GSK-3), cAMP response element-binding protein (CREB), and c-Fos. In mice with a genetic deletion of DARPP-32 or with point mutations in phosphorylation sites of DARPP-32, the effects of D-amphetamine, LSD, and PCP on two behavioral parameters-sensorimotor gating and repetitive movements-were strongly attenuated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1089681 | DOI Listing |
PLoS One
January 2025
Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America.
Opioid dependence is defined by an aversive withdrawal syndrome upon drug cessation that can motivate continued drug-taking, development of opioid use disorder, and precipitate relapse. An understudied but common opioid withdrawal symptom is disrupted sleep, reported as both insomnia and daytime sleepiness. Despite the prevalence and severity of sleep disturbances during opioid withdrawal, there is a gap in our understanding of their interactions.
View Article and Find Full Text PDFPLoS One
January 2025
School of Life Sciences, Anhui Medical University, Hefei, Anhui, China.
Primary hepatocellular carcinoma (PHC) is the sixth most common cancer and the third leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) accounts for 75%-85% of PHC. LARP3 is aberrantly expressed in multiple cancers.
View Article and Find Full Text PDFJ Anat
January 2025
Graduate School of Medicine, Juntendo University, Tokyo, Japan.
The anatomical innovation of sound-producing organs, which gives rise to a wide variety of sound signals, is one of the most fundamental factors leading to the explosive speciation of modern birds. Despite being a key clue to resolving the homology of sound-controlling muscles among birds, only few studies have explored the embryonic development of syringeal muscles. Using serial histological sections and immunohistochemistry, we described the three-dimensional anatomy and development of the cartilage, muscle, and innervation pattern of the tracheobronchi in three avian species: domestic fowls, cockatiels, and zebra finches.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Developmental Biology and Cancer Research and Teaching Department, University College London, Great Ormond Street Institute of Child Health, London, UK.
Polycystic kidney diseases (PKD) are genetic disorders which disrupt kidney architecture and function. Autosomal recessive PKD (ARPKD) is a rare form of PKD, caused by mutations in PKHD1, and clinically more severe than the more common autosomal dominant PKD (ADPKD). Prior studies have implicated Hedgehog (Hh) signaling in ADPKD, with increased levels of Hh components in experimental ADPKD and reduced cystogenesis following pharmacological Hh inhibition.
View Article and Find Full Text PDFAm J Transl Res
December 2024
Department of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine Guiyang 550025, Guizhou, China.
Therapeutic modalities for psychogenic erectile dysfunction (PED) are poorly targeted because of the lack of specific pathological features. The common symptoms of PED include psychological stress-related negative emotions and erectile dysfunction. Exploring their common therapeutic targets is helpful in the development of effective PED treatment strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!