Pullout strength of suture anchors used in rotator cuff repair.

J Bone Joint Surg Am

Orthopaedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center, Department of Orthopaedic Surgery, Harvard Medical School, 330 Brookline Avenue, RN 115, Boston, MA 02215, USA.

Published: November 2003

Background: Surgical treatment of rotator cuff tears may be complicated by osteoporosis of the proximal part of the humerus. The purpose of this study was to determine whether pullout strength of suture anchors is affected by the location of the anchor placement and by bone mineral density. We hypothesized that higher bone mineral density is associated with higher pullout strength of suture anchors.

Methods: Peripheral quantitative computed tomography was used to measure total, trabecular, and cortical bone mineral density in different regions of the lesser and greater tuberosities in seventeen cadaveric humeri. Suture anchors were inserted into individual regions and subjected to cyclic loading. Repeated-measures analysis of variance was used to assess differences in bone mineral density and load to failure between regions of interest. Pearson correlation was used to determine the association between bone mineral density and pullout strength of suture anchors.

Results: Total, trabecular, and cortical bone mineral densities were an average of 50%, 50%, and 10% higher, respectively, in the proximal part of the tuberosities compared with the distal part (p < 0.01). Within the proximal part of the greater tuberosity, trabecular bone mineral density of the posterior region and cortical bone mineral density of the middle region were, on the average, 25% and 16% higher, respectively, than the densities in the other regions (p < 0.01). Load to failure in the proximal part of the tuberosities was an average of 53% higher than that in the distal part (p < 0.01). The lesser tuberosity showed, on the average, a 32% higher load to failure than did the greater tuberosity (p < 0.01). Within the proximal part of the greater tuberosity, loads to failure in the anterior and middle regions were, on the average, 62% higher than the load to failure in the posterior region (p < 0.01). Overall positive correlations were found between bone mineral density and load to failure (0.65
Conclusions: We found that pullout strength of suture anchors correlates well with bone mineral density of the tuberosities. Higher loads to failure were found in regions in the proximal part of the tuberosities. Placement of anchors in these regions may prevent anchor loosening, formation of a tendon-bone gap, and failure of the rotator cuff repair.

Download full-text PDF

Source
http://dx.doi.org/10.2106/00004623-200311000-00021DOI Listing

Publication Analysis

Top Keywords

bone mineral
36
mineral density
32
load failure
20
pullout strength
16
strength suture
16
suture anchors
12
cortical bone
12
greater tuberosity
12
bone
9
mineral
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!