Previously we demonstrated that genetic deficiency of the cyclooxygenases (COX-1 or COX-2) altered keratinocyte differentiation in mouse skin [Tiano et. al. (2002) Cancer Res. 62, 3395-3401]. In this study, we show that topical application of SC-560 (a COX-1 selective inhibitor) or celecoxib (COX-2 selective) to TPA-treated wild-type skin caused fivefold increases in the number of basal keratinocytes expressing the early differentiation marker keratin 1 (K1). In contrast to skin, COX-2 not COX-1 was the major isoform expressed in cultured primary keratinocytes. COX-1 was predominantly expressed in detached, differentiated cells, whereas COX-2 was found in the attached, proliferating cells. High Ca++ medium induced K1 and COX-1 in wild-type keratinocytes but did not change COX-2 expression. As observed in skin, COX-1-/- and COX-2-/- primary keratinocytes expressed fivefold more K1 than wild-type cells. K1 levels in cultured wild-type keratinocytes were also increased by treatment with celecoxib and indomethacin. However, unlike its in vivo effect, SC-560, possibly due to low COX-1 expression in cultured mouse keratinocytes, did not increase K1 levels. Furthermore, no increases in apoptotic cell numbers were observed in COX-deficient keratinocytes or COX-inhibitor treated wild-type cells. Thus, a major effect of COX inhibitors and COX-deficiency is the induction of keratinocyte differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.02-1192fje | DOI Listing |
Nanoscale Adv
January 2025
Nanosafety Group, International Iberian Nanotechnology Laboratory Braga Portugal
In alignment with the global movement toward reducing animal testing, several reconstructed human epidermis (RHE) models have been created for conducting skin irritation tests. These models have undergone development, verification, validation, and integration into OECD TG 439. Our team has introduced a novel in-house RHE named GB-RHE, and we adhere to OECD TG 439 to pre-validate the model and test its potential employment for nanoparticle irritation studies.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
To enable in vitro investigation of human skin immunology, this study develops a microfluidic human skin equivalent (HSE) that supports the delivery of circulating immune cells via a vascular microchannel embedded within the dermis of a full-thickness construct. Within this platform, activation of keratinocyte inflammation promotes monocyte migration out of the vascular channel and into the dermal and epidermal compartments. Single-cell transcriptomic analysis reveals dynamic and cell-specific patterns of gene expression that are characteristic of acute activation and resolution of an inflammatory immune response, and the gene signatures of the monocyte-derived cells closely matches the differentiation trajectory of the monocytes into mature dermal macrophages.
View Article and Find Full Text PDFCurr Mol Med
January 2025
Laboratory of Physicochemical and Genetic Problems in Dermatology, Center of Theoretical Problems in Physico-Chemical Pharmacology at Russian Academy of Sciences, Moscow Russia.
Background: The transcription factor AP1 plays a crucial role in the proliferation, apoptosis, and terminal differentiation of epidermal keratinocytes.
Objective: This study aimed to clarify whether the subunit of AP1, FOSL1 protein, can be used to assess the exacerbation of psoriasis by evaluating its changes in protein and mRNA levels in cultured epidermal keratinocytes and skin specimens of the patients prescribed with bathwater PUVA (Psoralen and UVA) therapy. This study aimed to investigate FOSL1, a subunit of the transcription factor AP-1, as a potential biomarker for psoriasis by examining its protein and mRNA expression in skin specimens from patients undergoing bathwater PUVA (Psoralen and UVA) therapy and cultured epidermal keratinocytes.
Cell Transplant
January 2025
Stem Cell Biology and Regenerative Medicine Institution, Yi-Chuang Institute of Bio-Industry, Beijing, China.
Rheumatoid arthritis (RA) is a systemic, chronic inflammatory disease characterized by altered levels of inflammatory cytokines. One of the key cytokines involved in the pathogenesis of RA is tumor necrosis factor α (TNF-α), which plays a crucial role in the differentiation of T cells and B cells and serves as a primary trigger of inflammation and joint damage in RA. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have shown potential in alleviating the symptoms of RA.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511443, China. Electronic address:
Psoriasis is a prevalent relapsing dermatological condition that often necessitates lifelong treatment. The distinctive thickening of the stratum corneum presents a challenge to drug penetration. The employment of microneedles has been demonstrated to enhance the transdermal drug delivery efficacy by creating multiple microchannels in the skin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!