An aquatic community was recovered from a waste discharge container fed with several aromatic pollutants. After 3 months of selective enrichment with p-chlorophenol and p-nitrophenol, two microalgae species, Chlorella vulgaris and Coenochloris pyrenoidosa, were recovered from the microbial consortium. As an axenic culture, this microalgae consortium was able to remove p-chlorophenol under different photo-regimes. Cultures grown under a 24h light regime were capable of biodegrading 50mg l(-1) of p-chlorophenol within 5 days. Addition of zeolite, an adsorbing material, did not improve the p-chlorophenol removal. However, when p-chlorophenol at 150mgl(-1) was fed to the culture supplemented with zeolite, the growth rate of the consortium improved, but the lag phase was longer (16 against 14 days in the absence of zeolite).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2003.09.005 | DOI Listing |
Plants (Basel)
January 2025
Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
Macrolide pollution has attracted a great deal of attention because of its ecotoxic effects on microalgae, but the role of phycospheric bacteria under antibiotic stress remains unclear. This study explored the toxic effects of erythromycin (ERY) on the growth and nitrogen metabolism of ; then, it analyzed and predicted the effects of the composition and ecological function of phycospheric bacteria on microalgae under ERY stress. We found that 0.
View Article and Find Full Text PDFInt J Hyg Environ Health
December 2024
Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil.
Trimethoprim (TMP) and sulfamethoxazole (SMX) are bacteriostatic agents, which are co-administered to patients during infection treatment due to their synergetic effects. Once consumed, TMP and SMX end up in wastewater and are directed to municipal wastewater treatment plants (WWTPs) which fail to remove these contaminants from municipal wastewater. The discharge of WWTP effluents containing antibiotics in the environment is a major concern for public health as it contributes to the spread of antimicrobial resistance.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, c/Jose Antonio Novais 12, 28040 Madrid, Spain.
Microalga-bacteria consortia are increasingly recognized for their effectiveness in wastewater treatment, leveraging the metabolic synergy between microalgae and bacteria to enhance nutrient removal and overall treatment efficiency. These systems offer a sustainable approach to addressing pollutants such as nitrogen and phosphorus. However, their potential in removing specific contaminants like steroid hormones is less explored.
View Article and Find Full Text PDFChemosphere
February 2025
Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy. Electronic address:
Ionic Liquids (ILs) are currently applied in a wide variety of fields, with promising outcomes in microalgae high value biocompounds extraction. The occurrence of these compounds in natural water systems, with their characteristic stability and low biodegradability, becomes a threat worthy of attention. In the present study, Dunaliella tertiolecta, Isochrysis galbana and Rhinomonas reticulata were exposed to 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM] TfN) for 72, 168 and 264 h, at 20 and 25 °C.
View Article and Find Full Text PDFAIMS Microbiol
November 2024
Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
Sustainable alternatives are essential to improving agriculture production to meet the growing world's critical demands. Cyanobacteria and microalgae are considered renewable resources with a wide range of potential uses in the agricultural sector. We aimed to isolate cyanobacteria and microalgae from the mud of a carbon dioxide-rich sulfur pond and to investigate their plant growth-promoting (PGP) and soil bio-consolidating ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!