The effect of the hydrostatic pressure on the CO ligand stretch vibration in cytochrome P450cam-CO bound with various substrates is studied by FTIR. The vibration frequency is linearily shifted to lower values with increasing pressure. The slope of the shift gives the isothermal compressibility of the heme pocket and is found to be related to the high-spin state content in an opposite direction to that previously observed from the pressure-induced shift of the Soret band. This opposite behaviour is explained by the dual effect of heme pocket water molecules both on the CO ligand and on electrostatic potentials produced by the protein at the distal side. The latter effect disturbs ligand-distal side contacts which are needed for a specific proton transfer in oxygen activation when dioxygen is the ligand. Their loss results in uncoupled H(2)O(2) formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2003.09.164DOI Listing

Publication Analysis

Top Keywords

heme pocket
8
compressibility uncoupling
4
uncoupling cytochrome
4
cytochrome p450cam
4
p450cam high
4
high pressure
4
pressure ftir
4
ftir activity
4
activity studies
4
studies hydrostatic
4

Similar Publications

We have recently demonstrated a novel anaerobic NADH-dependent haem breakdown reaction, which is carried out by a range of haemoproteins. The Yersinia enterocolitica protein, HemS, is the focus of further research presented in the current paper. Using conventional experimental methods, bioinformatics, and energy landscape theory (ELT), we provide new insight into the mechanism of the novel breakdown process.

View Article and Find Full Text PDF

A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation.

View Article and Find Full Text PDF

Aims: The aim of this study is the evaluation of an Azomethine derivative, BCS2, for its antioxidant and anti-tumor activities against mammary carcinoma through the Nrf2- Keap1-HO-1 pathway.

Background: The global prevalence of breast cancer is rising at an alarming rate. The facilitation of abnormal cell proliferation in mammary carcinoma occurs due to the disruption of signaling pathways that balance pro- and antioxidant status, thereby producing oxidative stress that disrupts genomic stability.

View Article and Find Full Text PDF

Soluble guanylyl cyclase (sGC) is a well-established pharmacological target for the treatment of acute angina pectoris, pulmonary hypertension and heart failure. Histidine 105 in the heme binding pocket of sGC is a crucial residue for heme binding and natural enzyme activation by NO. It was assumed that the heme-free sGC mutants α/βH105F and α/βH105A were valuable research tools for studying NO independent sGC activators.

View Article and Find Full Text PDF

Prevention of fenitrothion induced hepatic toxicity by saponarin via modulating TLR4/MYD88, JAK1/STAT3 and NF-κB signaling pathways.

Int J Biochem Cell Biol

December 2024

Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.

Fenitrothion (FEN) is an organophosphate insecticidal agent that is considered as major source of organs toxicity. Saponarin (SAP) is a naturally occurring novel flavone that exhibits a wide range of medicinal properties. The current trial was conducted to evaluate the ameliorative potential of SAP against FEN instigated liver toxicity in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!