Redundant representations in evolutionary computation.

Evol Comput

Department of Information Systems 1, University of Mannheim, Schloss, D-68131 Mannheim, Germany.

Published: July 2004

This paper discusses how the use of redundant representations influences the performance of genetic and evolutionary algorithms. Representations are redundant if the number of genotypes exceeds the number of phenotypes. A distinction is made between synonymously and non-synonymously redundant representations. Representations are synonymously redundant if the genotypes that represent the same phenotype are very similar to each other. Non-synonymously redundant representations do not allow genetic operators to work properly and result in a lower performance of evolutionary search. When using synonymously redundant representations, the performance of selectorecombinative genetic algorithms (GAs) depends on the modification of the initial supply. We have developed theoretical models for synonymously redundant representations that show the necessary population size to solve a problem and the number of generations goes with O(2(kr)/r), where kr is the order of redundancy and r is the number of genotypic building blocks (BB) that represent the optimal phenotypic BB. As a result, uniformly redundant representations do not change the behavior of GAs. Only by increasing r, which means overrepresenting the optimal solution, does GA performance increase. Therefore, non-uniformly redundant representations can only be used advantageously if a-priori information exists regarding the optimal solution. The validity of the proposed theoretical concepts is illustrated for the binary trivial voting mapping and the real-valued link-biased encoding. Our empirical investigations show that the developed population sizing and time to convergence models allow an accurate prediction of the empirical results.

Download full-text PDF

Source
http://dx.doi.org/10.1162/106365603322519288DOI Listing

Publication Analysis

Top Keywords

redundant representations
32
synonymously redundant
12
redundant
10
representations
9
non-synonymously redundant
8
optimal solution
8
representations evolutionary
4
evolutionary computation
4
computation paper
4
paper discusses
4

Similar Publications

Generative models have revolutionized de novo drug design, allowing to produce molecules on-demand with desired physicochemical and pharmacological properties. String based molecular representations, such as SMILES (Simplified Molecular Input Line Entry System) and SELFIES (Self-Referencing Embedded Strings), have played a pivotal role in the success of generative approaches, thanks to their capacity to encode atom- and bond- information and ease-of-generation. However, such 'atom-level' string representations could have certain limitations, in terms of capturing information on chirality, and synthetic accessibility of the corresponding designs.

View Article and Find Full Text PDF

ST-CIRL: a reinforcement learning-based feature selection approach for enhanced anxiety classification.

Physiol Meas

January 2025

Department of Electronics and Communication , Delhi Technological University Department of Electronics and Communication, Delhi Technological university, Bawana, New Delhi-42, New Delhi, Delhi, 110042, INDIA.

A physiological signal-based Human-Computer Interaction (HCI) system provides a communication link between human emotional states and external devices. Accurately classifying these signals is vital for effective interaction, which requires extracting and selecting the most discriminative features to differentiate between various emotional states. This paper introduces the SMOTETomek-Correlated Interactive Reinforcement Learning (ST-CIRL) framework for anxiety classification, which leverages meta-descriptive statistics to enhance the state representation in the reinforcement learning process.

View Article and Find Full Text PDF

Efficient visual word recognition presumably relies on orthographic prediction error (oPE) representations. On the basis of a transparent neurocognitive computational model rooted in the principles of the predictive coding framework, we postulated that readers optimize their percept by removing redundant visual signals, allowing them to focus on the informative aspects of the sensory input (i.e.

View Article and Find Full Text PDF

Fringe Texture Driven Droplet Measurement End-to-End Network Based on Physics Aberrations Restoration of Coherence Scanning Interferometry.

Micromachines (Basel)

December 2024

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Accurate and efficient measurement of deposited droplets' volume is vital to achieve zero-defect manufacturing in inkjet printed organic light-emitting diode (OLED), but it remains a challenge due to droplets' featurelessness. In our work, coherence scanning interferometry (CSI) is utilized to measure the volume. However, the CSI redundant sampling and image degradation led by the sample's transparency decrease the efficiency and accuracy.

View Article and Find Full Text PDF

Invariant Representation Learning in Multimedia Recommendation with Modality Alignment and Model Fusion.

Entropy (Basel)

January 2025

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

Multimedia recommendation systems aim to accurately predict user preferences from multimodal data. However, existing methods may learn a recommendation model from spurious features, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!