We present a QTL genome scan for fatty acid composition in pigs. An F2 cross between Iberian x Landrace pigs and a regression approach fitting the carcass weight as a covariate for QTL identification was used. Chromosomes (Chrs) 4, 6, 8, 10, and 12 showed highly significant effects. The Chr 4 QTL influenced the linoleic content and both the fatty acid double-bond index and peroxidability index. In Chr 6 we found significant associations with the double-bond index and the unsaturated index of fatty acids. Chr 8 showed clear effects on the percentages of palmitic and palmitoleic fatty acids as well as the average chain length of fatty acids. In Chr 10 we detected a significant QTL for the percentage of myristic fatty acid, with an F value that was slightly above the genomewide threshold. The percentage of linolenic fatty acid was affected by a region on Chr 12. A nearly significant QTL for the content of gadoleic fatty acid was also detected in Chr 12. We also analyzed the genomic QTL distribution by a regression model that fits the backfat thickness as a covariate. Some of the QTL that were detected in our analysis could not be detected when the data were corrected by backfat thickness. This work shows how critical the selection of a covariate can be in the interpretation of results. This is the first report of a genome scan detection of QTL directly affecting fatty acid composition in pigs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00335-002-2210-7DOI Listing

Publication Analysis

Top Keywords

fatty acid
28
acid composition
12
fatty acids
12
fatty
10
detection qtl
8
qtl
8
genome scan
8
composition pigs
8
covariate qtl
8
chr qtl
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!