Studies of the diversity of microorganisms in the environment have been facilitated by use of PCR and reverse transcription PCR (RT-PCR). Inhibition of the PCR by complex sample matrices and low abundance of some target microorganisms require the use of high-sensitivity amplification procedures, involving a large number of cycles or nested PCR methods. Using these methods, we frequently observed contamination of the amplification reagents, including polymerases, by genomic DNA containing nitrogenase (nifH) and rRNA genes. Contaminating genes were sequenced and found to belong to a variety of rRNA clades, but only three major nifH clades. These sequence types included a few nifH sequences reported in previous studies of the environment. Contamination could be reduced by restriction digestion and ultrafiltration of PCR reagents, but efficiency of amplification was also reduced. Our results suggest that studies relying on large numbers of PCR amplification cycles to assess environmental gene diversity should take precautions to assure that clone libraries generated from amplified PCR products are not the result of contaminated PCR reagents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2144/03355st08 | DOI Listing |
Elife
December 2024
Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.
Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.
View Article and Find Full Text PDFPLoS One
January 2025
Université Paris Cité, IRD, MERIT, F-75006, Paris, France.
Introduction: Recently, efforts to eliminate malaria have shifted focus from symptomatic cases alone to include asymptomatic carriers, who are now recognized as significant contributors to the disease's transmission and control. This study examines the relationship between asymptomatic malaria infection and hemoglobin levels in Benin.
Methods: A cohort in Benin was enrolled and categorized into three age groups (under 5 years, 5-15 years, and over 15 years) for follow-up from August to November 2021.
PLoS One
January 2025
Department of Microbiology and Hygiene, Mymensingh, Bangladesh.
Pseudomonas aeruginosa (P. aeruginosa) is a major pathogen associated conditions like septicaemia, respiratory disorders, and diarrhoea in poultry, particularly in Japanese quail (Coturnix japonica). The infection causes huge economical losses due to its high transmissibility, mortality and zoonotic potential.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry and Molecular Biology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
Escherichia coli is one of the critical One Health pathogens due to its vast array of virulence and antimicrobial resistance genes. This study used multiplex PCR to determine the occurrence of virulence genes bfp, ompA, traT, eaeA, and stx1 among 50 multidrug-resistant (MDR) E. coli isolates from humans (n = 15), animals (n = 29), and the environment (n = 6) in Dar es Salaam, Tanzania.
View Article and Find Full Text PDFPLoS One
January 2025
Cummings School of Veterinary Medicine at Tufts University, Department of Infectious Diseases and Global Health, North Grafton, MA, United States of America.
Glucocorticosteroids remain the most common pharmaceutical approach for the treatment of equine asthma but can be associated with significant side effects, including respiratory microbiome alterations. The goal of the study was to assess the impact of 2% lidocaine nebulization, a projected alternative treatment of equine asthma, on the healthy equine respiratory microbiota. A prospective, randomized, controlled, blinded, 2-way crossover study was performed, to assess the effect of 1 mg/kg 2% lidocaine (7 treatments over 4 days) on the equine respiratory microbiota compared to control horses (saline and no treatment).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!