A new approach for the detection of carbon-centered radicals in enzymatic processes using prefluorescent probes.

Photochem Photobiol

Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada.

Published: October 2003

In this communication we propose a novel application for prefluorescent probes in the detection of free carbon-centered radicals in enzymatic processes. Prefluorescent probes combine a fluorescent moiety tethered to a paramagnetic nitroxide that acts as a fluorescence quencher. Trapping of a radical by the nitroxide group restores the fluorescence properties. The increase in fluorescence intensity with time reflects the formation and quenching of carbon-centered radicals and can be used for the quantitative evaluation of yields and kinetics. As a test system we used horseradish peroxidase, an oxidoreductase that is widely accepted to operate by a radical-mediated mechanism. We used the prefluorescent probe (quinoline-TEMPO), where a quinoline moiety has been tethered to 2,2,6,6-tetramethylpiperidin-1-oxyl.

Download full-text PDF

Source
http://dx.doi.org/10.1562/0031-8655(2003)078<0416:anaftd>2.0.co;2DOI Listing

Publication Analysis

Top Keywords

carbon-centered radicals
12
prefluorescent probes
12
radicals enzymatic
8
enzymatic processes
8
processes prefluorescent
8
moiety tethered
8
approach detection
4
detection carbon-centered
4
prefluorescent
4
probes communication
4

Similar Publications

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

The functionalization of the C-N bond of amines is a straightforward strategy for the construction of complex scaffolds or for the late-stage functionalization of pharmaceuticals. Herein, we describe a photoredox-catalyzed strategy for the deaminative alkylation of primary amine-derived isonitriles that provides unnatural amino acid derivatives under mild conditions. The use of silacarboxylic acids as silyl radical precursors enables the generation of carbon-centered radicals that allow the construction of Csp-Csp bonds via a Giese-type addition, avoiding the undesired hydrodeamination product.

View Article and Find Full Text PDF

Ferrous oxalate (FeCO)-based composite has been recognized as an eminent catalyst for Cr(III)-ethylenediamine tetraacetic acid (Cr(III)-EDTA) decomplexation. However, their practical application has been limited by low cycling capacity and an ambiguous mechanism. In this research, a composite catalyst consisting of biotite loaded with nano FeCO (CFS90) was prepared directly from iron-containing silicate tailing.

View Article and Find Full Text PDF

Electron transfer tuning for persulfate activation via the radical and non-radical pathways with biochar mediator.

J Hazard Mater

December 2024

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan 610059, P.R. China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P.R. China. Electronic address:

Electron mediator-based in-situ chemical oxidation (ISCO) offers a novel strategy for groundwater remediation due to diverse reaction pathways. However, distinguishing and further tuning the reaction pathway remains challenging. Herein, biochar as an electron mediator targeted active peroxysulphate (PDS) via the radical or non-radical pathway.

View Article and Find Full Text PDF

Efforts to understand radical stability have led to considerable progress in radical chemistry. In this article, we investigated a novel approach to enhancing the radical stability of carbon-centered radicals through space electron delocalization within [2,2]-paracyclophanes. Alkoxyamines possessing a paracyclophane scaffold exploit face-to-face π-π-interactions between the aromatic rings to effectively lower bond dissociation energy (BDE) for NO-C bond homolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!