Large-scale two-dimensional gel experiments have the potential to identify proteins that play an important role in elucidating cell mechanisms and in various stages of drug discovery. Such experiments, typically including hundreds or even thousands of related gels, are notoriously difficult to perform, and analysis of the gel images has until recently been virtually impossible. In this paper we describe a scalable computational model that permits the organization and analysis of a large gel collection. The model is implemented in Compugen's Z4000 system. Gels are organized in a hierarchical, multidimensional data structure that allow the user to view a large-scale experiment as a tree of numerous simpler experiments, and carry out the analysis one step at a time. Analyzed sets of gels form processing units that can be combined into higher level units in an iterative framework. The different conditions at the core of the experiment design, termed the dimensions of the experiment, are transformed from a multidimensional structure to a single hierarchy. The higher level comparison is performed with the aid of a synthetic "adaptor" gel image, called a Raw Master Gel (RMG). The RMG allows the inclusion of data from an entire set of gels to be presented as a gel image, thereby enabling the iterative process. Our model includes a flexible experimental design approach that allows the researcher to choose the condition to be analyzed a posteriori. It also enables data reuse, the performing of several different analysis designs on the same experimental data. The stability and reproducibility of a protein can be analyzed by tracking it up or down the hierarchical dimensions of the experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200300533DOI Listing

Publication Analysis

Top Keywords

large-scale two-dimensional
8
two-dimensional gel
8
higher level
8
dimensions experiment
8
gel image
8
gel
7
hierarchical analysis
4
analysis large-scale
4
gel electrophoresis
4
experiments
4

Similar Publications

Self-Organized Protonic Conductive Nanochannel Arrays for Ultra-High-Density Data Storage.

Nano Lett

January 2025

National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.

While the highest-performing memristors currently available offer superior storage density and energy efficiency, their large-scale integration is hindered by the random distribution of filaments and nonuniform resistive switching in memory cells. Here, we demonstrate the self-organized synthesis of a type of two-dimensional protonic coordination polymers with high crystallinity and porosity. Hydrogen-bond networks containing proton carriers along its nanochannels enable uniform resistive switching down to the subnanoscale range.

View Article and Find Full Text PDF

Two-dimensional (2D) organic-inorganic halide perovskites are promising sensitive materials for optoelectronic applications due to their strong light-matter interactions, layered structure, long carrier lifetime and diffusion length. However, a high gate bias is indispensable for perovskite-based phototransistors to optimize detection performances, since ion migration seriously screens the gate electric field and the deposition process introduces intrinsic defects, which induces severe leakages and large power dissipation. In this work, an ultrasensitive phototransistor based on the (PEA)SnI perovskite and the Al:HfO ferroelectric layer is meticulously studied, working without an external gate voltage.

View Article and Find Full Text PDF

Two-dimensional (2D) van der Waals heterostructures consist of different 2D crystals with diverse properties, constituting the cornerstone of the new generation of 2D electronic devices. Yet interfaces in heterostructures inevitably break bulk symmetry and structural continuity, resulting in delicate atomic rearrangements and novel electronic structures. In this paper, we predict that 2D interfaces undergo "spontaneous curvature", which means when two flat 2D layers approach each other, they inevitably experience out-of-plane curvature.

View Article and Find Full Text PDF

Two-dimensional (2D) black arsenic phosphorus (b-AsP) material has been attracting considerable attention for its extraordinary properties. However, its application in large-scale device fabrication remains challenging due to the limited scale and irregular shape. Here, we found the special effect of Te upon growth of b-AsP and developed a novel Te-regulated steady growth (Te-SG) strategy to obtain high-quality b-AsP single crystal.

View Article and Find Full Text PDF

Two-dimensional molybdenum ditelluride (2D MoTe) is an interesting material for artificial synapses due to its unique electronic properties and phase tunability in different polymorphs 2H/1T'. However, the growth of stable and large-scale 2D MoTe on a CMOS-compatible Si/SiO substrate remains challenging because of the high growth temperature and impurity-involved transfer process. We developed a large-scale MoTe film on a Si/SiO wafer by simple sputtering followed by lithium-ion intercalation and applied it to artificial synaptic devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!