A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. | LitMetric

Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding.

Nat Neurosci

Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, ICND 118, La Jolla, California 92037, USA.

Published: December 2003

Lysophosphatidic acid (LPA) is a phospholipid that has extracellular signaling properties mediated by G protein-coupled receptors. Two LPA receptors, LPA(1) and LPA(2), are expressed in the embryonic cerebral cortex, suggesting roles for LPA signaling in cortical formation. Here we report that intact cerebral cortices exposed to extracellular LPA ex vivo rapidly increased in width and produced folds resembling gyri, which are not normally present in mouse brains and are absent in LPA(1) LPA(2) double-null mice. Mechanistically, growth was not due to increased proliferation but rather to receptor-dependent reduced cell death and increased terminal mitosis of neural progenitor cells (NPCs). Our results implicate extracellular lipid signals as new influences on brain formation during embryonic development.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn1157DOI Listing

Publication Analysis

Top Keywords

lysophosphatidic acid
8
lpa1 lpa2
8
non-proliferative effects
4
effects lysophosphatidic
4
acid enhance
4
enhance cortical
4
cortical growth
4
growth folding
4
folding lysophosphatidic
4
lpa
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!