Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lysophosphatidic acid (LPA) is a phospholipid that has extracellular signaling properties mediated by G protein-coupled receptors. Two LPA receptors, LPA(1) and LPA(2), are expressed in the embryonic cerebral cortex, suggesting roles for LPA signaling in cortical formation. Here we report that intact cerebral cortices exposed to extracellular LPA ex vivo rapidly increased in width and produced folds resembling gyri, which are not normally present in mouse brains and are absent in LPA(1) LPA(2) double-null mice. Mechanistically, growth was not due to increased proliferation but rather to receptor-dependent reduced cell death and increased terminal mitosis of neural progenitor cells (NPCs). Our results implicate extracellular lipid signals as new influences on brain formation during embryonic development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nn1157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!