Minocycline-induced activation of tetracycline-responsive promoter.

Neurosci Lett

Laboratory of Experimental Neurosurgery, CP602, U.L.B.-Erasme, Batiment C, niveau 6, 808 route de Lennik, 1070, Brussels, Belgium.

Published: December 2003

Minocycline has been suggested to be an anti-apoptotic compound and an anti-inflammatory agent in various models of neurodegeneration. In the present study, using a stable cell line expressing green fluorescent protein under the control of a tetracycline-responsive promoter, we demonstrate that minocycline is able to promote tetracycline-controlled gene expression although it needs longer time and higher concentration to reach the effect obtained with the classical inducer doxycycline. Furthermore, the extinction of the system after antibiotics removal is faster when using minocycline. Interestingly, minocycline displays lower cytotoxicity than doxycycline. It is thus tempting to speculate that combining the intrinsic neuroprotective activity of minocycline with its ability to induce tetracycline-regulatable promoters would be greatly beneficial for neuroprotective/neurorestaurative gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2003.08.067DOI Listing

Publication Analysis

Top Keywords

tetracycline-responsive promoter
8
minocycline
5
minocycline-induced activation
4
activation tetracycline-responsive
4
promoter minocycline
4
minocycline suggested
4
suggested anti-apoptotic
4
anti-apoptotic compound
4
compound anti-inflammatory
4
anti-inflammatory agent
4

Similar Publications

Efficient Generation of Stable Cell Lines with Inducible Neuronal Transgene Expression Using the piggyBac Transposon System.

Methods Mol Biol

June 2022

Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia.

The piggyBac transposon system has been adapted to be a highly efficient genome engineering tool for transgenesis of eukaryotic cells and organisms. As with other methods of transgenesis, incorporation of an inducible promoter, such as a tetracycline-responsive element, enables inducible transgene expression. Here, we describe an efficient method of using the piggyBac system to create stably transfected mammalian cell lines, including inducible transgene expression.

View Article and Find Full Text PDF

The notion that macroautophagy/autophagy is a potentially attractive therapeutic target for a variety of diseases, including cancer, largely stems from pre-clinical mouse studies. Most of these examine the effects of irreversible and organ confined autophagy deletion using site specific -loxP recombination of the essential autophagy regulating genes or . Model systems with the ability to impair autophagy systemically and reversibly at all disease stages would allow a more realistic approach to evaluate the consequences of authophagy inhibition as a therapeutic concept and its potential side effects.

View Article and Find Full Text PDF

A tetracycline-responsive transcription system (Tet-Off) adapted for use in Toxoplasma gondii (nicknamed TATi) is useful for molecular biological studies of this organism. Previous studies using TATi incorporated minimal promoters derived from the gene promoters for TgSAG1 or TgSAG4. The present study achieves improved activation and suppression of an integrated reporter gene in the absence and presence of anhydrotetracycline, respectively (p < 0.

View Article and Find Full Text PDF

Background: The tetracycline-responsive system (Tet-ON/OFF) has proven to be a valuable tool for manipulating gene expression in an inducible, temporal, and tissue-specific manner. The purpose of this study was to create and characterize a new transgenic mouse strain utilizing the human skeletal muscle α-actin (HSA) promoter to drive skeletal muscle-specific expression of the reverse tetracycline transactivator (rtTA) gene which we have designated as the HSA-rtTA mouse.

Methods: To confirm the HSA-rtTA mouse was capable of driving skeletal muscle-specific expression, we crossed the HSA-rtTA mouse with the tetracycline-responsive histone H2B-green fluorescent protein (H2B-GFP) transgenic mouse in order to label myonuclei.

View Article and Find Full Text PDF

Deciphering a function of a given protein requires investigating various biological aspects. Usually, the protein of interest is expressed with a fusion tag that aids or allows subsequent analyses. Additionally, downregulation or inactivation of the studied gene enables functional studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!