The crystal structures and packing features of a family of 13 aminophenols, or supraminols, are analyzed and correlated. These compounds are divided into three groups: (a) compounds 1-5 with methylene spacers of the general type HO-C6H4-(CH2)n-C6H4-NH2 (n = 1 to 5) and both OH and NH2 in a para position; (b) compounds 1a, 2a, 2b, 2c, and 3a in which one or more of the methylene linkers in 1 to 3 are exchanged with an S-atom; and (c) compounds 2d, 1b, and 6a prepared with considerations of crystal engineering and where the crystal structures may be anticipated on the basis of structures 1-5,1a, 2a, 2b, 2c, and 3a. These 13 aminols can be described in terms of three major supramolecular synthons based on hydrogen bonding between OH and NH2 groups: the tetrameric loop or square motif, the infinite N(H)O chain, and the beta-As sheet. These three synthons are not completely independent of each other but interrelate, with the structures tending toward the more stable beta-As sheet in some cases. Compounds 1-5 show an alternation in melting points, and compounds with n = even exhibit systematically higher melting points compared to those with n = odd. The alternating melting points are reflected in, and explained by, the alternation in the crystal structures. The n = odd structures tend toward the beta-As sheet as n increases and can be considered as a variable series whereas for n = even, the beta-As sheet is invariably formed constituting a fixed series. Substitution of a methylene group by an isosteric S-atom may causes a change in the crystal structure. These observations are rationalized in terms of geometrical and chemical effects of the functional groups. This study shows that even for compounds with complex crystal structures the packing may be reasonably anticipated provided a sufficient number of examples are available.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja037227pDOI Listing

Publication Analysis

Top Keywords

crystal structures
20
beta-as sheet
16
melting points
12
structures
8
structures packing
8
compounds 1-5
8
crystal
7
compounds
7
correspondence molecular
4
molecular functionality
4

Similar Publications

Nine new structurally diverse filicinic acid-based meroterpenoids (-) with four kinds of carbon skeletons were isolated from the rhizomes of . Their structures, including the absolute configurations, were elucidated by comprehensive analysis of spectroscopic data, quantum chemical calculations, and single-crystal X-ray diffraction. Structurally, compounds - feature an unprecedented 6/6/5/6/6/6 hexacyclic system with a rare oxaspiro[4.

View Article and Find Full Text PDF

High-Performance Shear Mode Ultrasonic Transducer Operating at Ultrahigh Temperature Fabricated with BiSiO Piezoelectric Crystal.

ACS Appl Mater Interfaces

December 2024

Center for Optics Research and Engineering, State Key Laboratory of Crystal Materials, Shandong University, Qingdao 266237, China.

Shear mode ultrasonic waves are in high demand for structural health monitoring (SHM) applications owing to their nondispersive characteristics, singular mode, and minimal energy loss, especially in harsh environments. However, the generation and detection of a pure shear wave using conventional piezoelectric materials present substantial challenges because of their complex piezoelectric response, involving multiple modes. Herein, we introduce a high-quality piezoelectric crystal BiSiO (BSO), exhibiting a robust piezoelectric response ( = 45.

View Article and Find Full Text PDF

High photothermal conversion efficiency of RF sputtered TiO Magneli phase thin films and its linear correlation with light absorption capacity.

Sci Rep

December 2024

Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada.

RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.

View Article and Find Full Text PDF

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

We describe a structural and functional study of the G protein-coupled apelin receptor, which binds two endogenous peptide ligands, apelin and Elabela/Toddler (ELA), to regulate cardiovascular development and function. Characterisation of naturally occurring apelin receptor variants from the UK Genomics England 100,000 Genomes Project, and AlphaFold2 modelling, identifies T89 as important in the ELA binding site, and R168 as forming extensive interactions with the C-termini of both peptides. Base editing to introduce an R/H168 variant into human stem cell-derived cardiomyocytes demonstrates that this residue is critical for receptor binding and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!