Cancer cells are characterized by either an increased ability to proliferate or a diminished capacity to undergo programmed cell death. PTEN is instrumental in regulating the balance between growth and death in several cell types and has been described as a tumor suppressor. The chromosome arm on which PTEN is located is deleted in a subset of human osteosarcoma tumors. Therefore, we predicted that the loss of PTEN expression was contributing to increased Akt activation and the subsequent growth and survival of osteosarcoma tumor cells. Immunoblot analyses of several human osteosarcoma cell lines and normal osteoblasts revealed relatively abundant levels of PTEN. Furthermore, stimulation of cell growth or induction of apoptosis in osteosarcoma cells failed to affect PTEN expression or activity. Therefore, routine regulation of osteosarcoma cell growth and survival appears to be independent of changes in PTEN. Subsequently, the activation of a downstream target of PTEN activity, the survival factor Akt, was analyzed. Inappropriate activation of Akt could bypass the negative regulation by PTEN. Analyses of Akt expression in several osteosarcoma cell lines and normal osteoblasts revealed uniformly low basal levels of phosphorylated Akt. The levels of phosphorylated Akt did not increase following growth stimulation. In addition, osteosarcoma cell growth was unaffected by inhibitors of phosphatidylinositol-3 kinase, an upstream activator of the Akt signaling pathway. These data further suggest that the Akt pathway is not the predominant signaling cascade required for osteoblastic growth. However, inhibition of PTEN activity resulted in increased levels of Akt phosphorylation and enhanced cell proliferation. These data suggest that while abundant levels of PTEN normally maintain Akt in an inactive form in osteoblastic cells, the Akt signaling pathway is intact and functional.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.10709 | DOI Listing |
Phytomedicine
December 2024
Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Xining, Qinghai, China; Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China. Electronic address:
Osteosarcoma is an aggressive malignant bone tumor with an obscure etiology, as well as high prevalence and poor prognosis in children and adolescents. We aimed to investigate the pathogenesis of osteosarcoma through a comprehensive analysis of the tumor immune microenvironment (TIME) using multiple single-cell RNA sequencing datasets. SLC25A5, a gene implicated in cellular aging, significantly influenced osteosarcoma development by altering the TIME and promoting CD8+ T cell exhaustion, which contributed to reduced chemosensitivity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Joint Surgery, The Second Affiliated Hospital of Nantong University, No. 666, ShengLi Road, Chongchuan District, Nantong, 226001, Jiangsu, P.R. China.
Background: Abnormal expression of Zinc finger (ZNF) genes is commonly observed in osteosarcoma (OS), the most prevalent malignant bone tumor in children and teenagers. This project focused on the role of ZNF560 in the progress of OS.
Methods: The published datasets including TCGA-SARC and GSE99671 was utilized to screen out the abnormal expression of ZNF560 and associated gene patterns in sarcoma and OS tissues.
Nat Commun
January 2025
Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Large-scale combination drug screens are generally considered intractable due to the immense number of possible combinations. Existing approaches use ad hoc fixed experimental designs then train machine learning models to impute unobserved combinations. Here we propose BATCHIE, an orthogonal approach that conducts experiments dynamically in batches.
View Article and Find Full Text PDFScience
January 2025
Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Pediatric solid tumors are a leading cause of childhood disease mortality. In this work, we examined germline structural variants (SVs) as risk factors for pediatric extracranial solid tumors using germline genome sequencing of 1765 affected children, their 943 unaffected parents, and 6665 adult controls. We discovered a sex-biased association between very large (>1 megabase) germline chromosomal abnormalities and increased risk of solid tumors in male children.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China.
Dual-specificity phosphatase 3 (DUSP3) is a small-molecule dual-specificity phosphatase whose function has not yet been elucidated. This study investigated the effects of DUSP3 on the biological behavior of osteosarcoma and its potential mechanisms. We performed bioinformatics analysis of DUSP3 using "The Cancer Genome Atlas" and "The Tumor Immune Estimation Resource" databases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!