Purpose Of Review: The successful motor rehabilitation of stroke, traumatic brain-injured and spinal cord-injured patients requires an intensive and task-specific therapy approach. Budget constraints limit a hand-to-hand therapy approach, so that intelligent machines may offer a solution to promote motor recovery and obtain a better understanding of motor control. This new field of automated or robot-assisted motor rehabilitation has emerged since the 1990s.
Recent Findings: This article will present clinically viable devices for upper and lower extremity rehabilitation. The MIT-Manus and the Mirror-Image Motion Enabler robot, which enable unrestricted unilateral or bilateral shoulder and elbow movement, consistently proved superior on the motor impairment level. The ARM guide, which assisted reaching in a straight-line trajectory, and the Bi-Manu-Track, which enabled the bilateral practice of a forearm and wrist movement, are currently being tested. For gait rehabilitation after stroke, the electromechanical gait trainer, GT I, has proved effective compared with treadmill training with body weight support. The Lokomat, consisting of a treadmill and a powered exoskeleton, lessened the therapeutic effort compared with manually assisted treadmill training in spinal cord-injured patients. Future developments will see more degrees of freedom, improved man-machine interaction and the implementation of virtual reality.
Summary: Technical possibilities are one aspect, but multi-centre trials and a consideration of the unsubstantiated fears among therapists of being replaced by machines will decide on the successful implementation of this most promising field to the benefit of patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.wco.0000102630.16692.38 | DOI Listing |
Int J Exerc Sci
December 2024
Department of Sport and Health Sciences, Technical University of Munich, Munich, BY, GERMANY.
In weightlifting, quantitative kinematic analysis is essential for evaluating snatch performance. While marker-based (MB) approaches are commonly used, they are impractical for training or competitions. Markerless video-based (VB) systems utilizing deep learning-based pose estimation algorithms could address this issue.
View Article and Find Full Text PDFVet Res
January 2025
Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
M. ovipneumoniae is a respiratory pathogen that can cause mild to moderate pneumonia and reduced productivity in domestic lambs. However, studies on both natural and experimental M.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.
View Article and Find Full Text PDFNeurol Ther
January 2025
Biohaven Pharmaceuticals, Inc, 215 Church Street, New Haven, CT, 06510, USA.
Introduction: The Friedreich Ataxia Rating Scale-Activities of Daily Living (FARS-ADL) is a valid, highly utilized measure for assessing ADL impacts in patients with Friedreich ataxia. We provide evidence of the psychometric validity of the FARS-ADL in two cohorts of patients with spinocerebellar ataxia (SCA).
Methods: Using data from a cohort of real-world subjects with SCA (recruited at Massachusetts General Hospital [MGH]; n = 33) and a phase 3 trial of troriluzole in adults with SCA (NCT03701399 [Study 206]; n = 217), comprising a subset of patients with the SCA3 genotype (n = 89), the psychometric measurement properties and minimal change thresholds of the FARS-ADL were examined.
Sci Rep
January 2025
School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
The ore mining sites commonly experience slope instability, which is causing concern for the workers' safety and the operation's stability. Considering the Ziluoyi iron ore mining site as a case study, uniaxial compression strength and shear tests are performed on the lower disk peripheral rock, ore body, and upper disk peripheral rock, leading to the extraction of compressive strength and elastic modulus (lower disk: 77.7 MPa-9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!