The mass spectra of tert-butyldimethylsilyl (TBDMS) derivatives of 17 amino acids were obtained using electron ionization (EI) and atmospheric pressure photochemical ionization (APPhCI) mass spectrometry. The APPhCI mass spectra for all of the derivatives except arginine were shown to consist of only molecular [M](+.) and quasimolecular [MH](+) ions whereas, in the case of EI, the compounds in question underwent a drastic fragmentation. The application of APPhCI to gas chromatography-mass spectrometry enables a reliable identification of the TBDMS derivatives of amino acids in a mixture, even if its components are only partially resolved, due to the unique molecular masses for each compound. Comparison of the respective positive-ion chemical ionization (PICI) mass spectra available in the literature with APPhCI spectra has shown that, in the case of PICI, unlike APPhCI, noticeable fragmentation occurs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1255/ejms.581 | DOI Listing |
Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.
View Article and Find Full Text PDFChemSusChem
January 2025
TU Dortmund University: Technische Universitat Dortmund, Biochemical and Chemical Engineering, Emil-Figge-Straße 66, 44227, Dortmund, GERMANY.
Platform chemicals from renewable resources with broad applications are highly desirable, particularly for replacing fossil-based monomers. Bifunctional aliphatic ester-aldehydes, accessible via regioselective hydroformylation of unsaturated oleochemicals, can be converted into linear ω-amino/ω-hydroxy esters and dicarboxylic acids-key building blocks for biobased aliphatic polycondensates. However, their success hinges on efficient, economically viable production, with catalyst recycling being critical.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.
View Article and Find Full Text PDFBMC Biol
January 2025
The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.
View Article and Find Full Text PDFAMB Express
January 2025
Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt.
Valorization of poultry waste is a significant challenge addressed in this study, which aimed to produce cost-effective and sustainable peptones from poultry waste. The isolation process yielded the highly potent proteolytic B.subtilis isolate P6, identified through 16S rRNA gene sequencing to share 94% similarity with the B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!