Ser/Thr phosphorylation of insulin receptor substrate IRS-1 regulates insulin signaling, but the relevant phosphorylated residues and their potential functions during insulin-stimulated signal transduction are difficult to resolve. We used a sequence-specific polyclonal antibody directed against phosphorylated Ser(302) to study IRS-1-mediated signaling during insulin and insulin-like growth factor IGF-I stimulation. Insulin or IGF-I stimulated phosphorylation of Ser(302) in various cell backgrounds and in murine muscle. Wortmannin or rapamycin inhibited Ser(302) phosphorylation, and amino acids or glucose stimulated Ser(302) phosphorylation, suggesting a role for the mTOR cascade. The Ser(302) kinase associates with IRS-1 during immunoprecipitation, but its identity is unknown. The NH(2)-terminal c-Jun kinase did not phosphorylate Ser(302). Replacing Ser(302) with alanine significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and p85 binding and reduced insulin-stimulated phosphorylation of p70(S6K), ribosomal S6 protein, and 4E-BP1; however, this mutation had no effect on insulin-stimulated Akt or glycogen synthase kinase 3beta phosphorylation. Replacing Ser(302) with alanine reduced insulin/IGF-I-stimulated DNA synthesis. We conclude that Ser(302) phosphorylation integrates nutrient availability with insulin/IGF-I signaling to promote mitogenesis and cell growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M308631200 | DOI Listing |
Proc Natl Acad Sci U S A
April 2024
School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea.
Serine phosphorylations on insulin receptor substrate 1 (IRS-1) by diverse kinases aoccur widely during obesity-, stress-, and inflammation-induced conditions in models of insulin resistance and type 2 diabetes. In this study, we define a region within the human IRS-1, which is directly C-terminal to the PTB domain encompassing numerous serine phosphorylation sites including Ser307 (mouse Ser302) and Ser312 (mouse 307) creating a phosphorylation insulin resistance (PIR) domain. We demonstrate that the IRS-1 PTB-PIR with its unphosphorylated serine residues interacts with the insulin receptor (IR) but loses the IR-binding when they are phosphorylated.
View Article and Find Full Text PDFHeliyon
June 2023
Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China.
Taurine has been proven in many trials to alleviate the symptoms of metabolic associated fatty liver disease. Here its protective effect for hepatic steatosis and modulation of AMP-activated protein kinase and insulin signaling pathway were investigated. Steatotic HepG2 cell established with oleic acid (0.
View Article and Find Full Text PDFJ Med Food
February 2022
R&D Department, Caregen Co., Ltd., Anyang, Korea.
This study aimed to investigate the blood glucose-lowering effect of the peptide complex Deglusterol, which was isolated from corn extract, in insulin-resistance models. It was found to inhibit insulin receptor substrate (IRS) Ser302 phosphorylation, known as the insulin resistance mechanism, through the inhibition of tumor necrosis factor- (TNF-) signaling and the induction of AMP-activated protein kinase phosphorylation. Furthermore, the phosphorylation of IRS Tyr632, phosphoinositide 3-kinase (PI3K), and AKT that is involved in the insulin action mechanism was decreased by TNF-, whereas Deglusterol increased their phosphorylations, leading to an increase of glucose uptake rate by 190% through glucose transporter type 4 (GLUT4) compared with TNF--treated group in C2C12 cells.
View Article and Find Full Text PDFEnviron Toxicol
February 2020
Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China.
Microcystin-LR (MC-LR) is a widely produced monocyclic heptapeptides in eutrophication waterbodies. MC-LR can induce various toxic effects in different cells. Our previous studies have found that MC-LR exposure can disrupt insulin signaling pathway in human liver cells (HL 7702).
View Article and Find Full Text PDFYeungnam Univ J Med
January 2019
Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Korea.
Background: Dysregulation of hepatic glucose production (HGP) contributes to the development of type 2 diabetes mellitus. Telmisartan, an angiotensin II type 1 receptor blocker (ARB), has various ancillary effects in addition to common blood pressure-lowering effects. The effects and mechanism of telmisartan on HGP have not been fully elucidated and, therefore, we investigated these phenomena in hyperglycemic HepG2 cells and high-fat diet (HFD)-fed mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!