There are two hydrogen bonding interactions (N138ND2-Q106O and Y54OH-S141OG) between the C-terminal region and the main body of staphylococcal nuclease (SNase). To examine the role of these hydrogen bonds, SNase(141) and its three mutants, SNase(141)N138D, SNase(141)S141A, and SNase(141)N138D/S141A, were created. The N138D mutation has the N138ND2-Q106O interaction deleted and the S141A mutation has the Y54OH-S141OG and S141OG-N138O interactions deleted. The conformational features, stability, and activity of the proteins have been compared by using circular dichroism, intrinsic and ANS-binding fluorescence, GdnHCl-induced denaturation, and activity assay. The results clearly show that the N138D mutation significantly alters the secondary and tertiary structures of the protein, producing a partially unfolding state; in contrast, the S141A mutation has no such effect on structure. These results strongly suggest that the specific hydrogen bond, N138ND2-Q106O, plays an important role in maintaining the conformational integrity and stability of the nuclease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2003.09.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!