Developing new regulation of existing genes is likely a key mechanism by which organismal complexity arises in evolution. To examine plasticity of gene regulation over evolutionary timescales, we have determined the transcriptional circuit regulating mating type in the human fungal pathogen Candida albicans, and compared it to that of Saccharomyces cerevisiae. Since the two yeasts last shared an ancestor 100-800 million years ago, several major differences in circuitry have arisen. For example, a positive regulator of mating type was retained in C. albicans but lost in S. cerevisiae; this circuit branch was replaced by the modification of an existing negative regulator, thereby conserving the circuit output. We also characterize a tier of mating type transcriptional regulation that is present only in C. albicans, and likely results from the vastly different environmental selections imposed on the two yeasts--in this case, the pressure on C. albicans to survive in a mammalian host.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0092-8674(03)00885-7 | DOI Listing |
Biomolecules
January 2025
National Research Center "Kurchatov Institute", 123182 Moscow, Russia.
The methylotrophic yeast belongs to the group of homothallic fungi that are able to spontaneously change their mating type by inversion of chromosomal DNA in the MAT locus region. As a result, natural and genetically engineered cultures of these yeasts typically contain a mixture of sexually dimorphic cells that are prone to self-diploidisation and spore formation accompanied by genetic rearrangements. These characteristics pose a significant challenge to the development of genetically stable producers for industrial use.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China.
(.), an unconventional heterothallic yeast species, is renowned for its high production of tetraacetyl phytosphingosine (TAPS). Due to its excellent performance in TAPS production, this study aimed to construct a genetic operating system of .
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
is a species whose sclerotia have been extensively employed in traditional Chinese medicine, which has diuretic, antitumor, anticancer, and immune system enhancement properties. However, prolonged asexual reproduction has resulted in significant homogenization and degeneration of seed sclerotia. In contrast, sexual reproduction has emerged as an effective strategy to address these challenges, with a distinct mating system serving as the foundation for the implementation of sexual breeding.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91198 Gif-sur-Yvette, France.
Recombination is advantageous over the long-term, as it allows efficient selection and purging deleterious mutations. Nevertheless, recombination suppression has repeatedly evolved in sex and mating-type chromosomes. The evolutionary causes for recombination suppression and the proximal mechanisms preventing crossing overs are poorly understood.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Neuroscience, Farber Institute for Neurosciences, Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, United States.
Circadian rhythms play a crucial role in regulating behavior, physiology, and health. Sexual dimorphism, a widespread phenomenon across species, influences circadian behaviors. Additionally, post-mating physiological changes in females are known to modulate various behaviors, yet their effects on circadian rhythms remain underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!