Pyrimethamine resistance in the malaria parasite Plasmodium falciparum is characterized by specific point mutations in the dihydrofolate reductase (DHFR) domain of the bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene. We have previously explored the effect of these mutations by engineering homologous alleles of Toxoplasma gondii DHFR-TS, which can readily be expressed as recombinant protein for enzymatic studies, or as allelic replacements in transgenic parasites. In order to directly assess the costs of pyrimethamine-resistance in vivo, we have carried out competition studies between mixtures of T. gondii tachyzoites harbouring wild-type or mutant DHFR-TS alleles, both in tissue culture and in mice. Arg59+Asn108 mutants (using the P. falciparum numbering system) exhibit no significant fitness defects in vitro, but a fitness defect of 1.8% per generation in mice. Arg59+Ser223 mutants exhibit fitness defects of >2.8% per generation both in vitro and in vivo, which may explain why this highly pyrimethamine-resistant allele has not been observed in the field. It is important to note that long-term propagation of parasites in vitro or in vivo can produce adaptations affecting fitness by >3.7% per generation, necessitating careful attention to background in head-to-head competition studies. A sensitive PCR-based assay permits different growth rates to be assessed even in the absence of a drug resistance marker that can be scored by plaque assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2958.2003.03756.x | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana.
: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness is constrained by drug resistance, unfavorable side effects, and substantial associated costs.
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2025
Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal.
Background: Since 2006, artemisinin-based combination therapies (ACTs) have been introduced in Senegal in response to chloroquine resistance (CQ-R) and have shown high efficacy against Plasmodium falciparum. However, the detection of the PfKelch13R515K mutation in Kaolack, which confers artemisinin resistance in vitro, highlights the urgency of strengthening antimalarial drug surveillance to achieve malaria elimination by 2030.
Objective: To assess the proportion of P.
Open Forum Infect Dis
January 2025
UMR261 MERIT, Université Paris Cité, IRD, Paris, France.
Background: Malaria infections in pregnancy are a major cause of maternal morbidity and neonatal mortality in sub-Saharan Africa. A high proportion of these infections are submicroscopic, which are usually asymptomatic and therefore untreated during pregnancy. Intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) aims to prevent and treat all potential infections whether submicroscopic or not.
View Article and Find Full Text PDFLancet Infect Dis
January 2025
Ministry of Health, Kampala, Uganda.
Background: Seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine combined with amodiaquine (SPAQ) effectively protects eligible children from malaria in areas of high and seasonal transmission. However, concerns about parasite resistance to sulfadoxine-pyrimethamine in East and Southern Africa necessitate evaluating alternative drug regimens. This study assessed the effectiveness of SPAQ and dihydroartemisinin-piperaquine for SMC in Uganda.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.
Background: To understand the emergence and spread of drug-resistant parasites in malaria-endemic areas, accurate assessment and monitoring of antimalarial drug resistance markers is critical. Recent advances in next-generation sequencing (NGS) technologies have enabled the tracking of drug-resistant malaria parasites.
Methods: In this study, we used Targeted Amplicon Deep Sequencing (TADS) to characterise the genetic diversity of the Pfk13, Pfdhfr, Pfdhps, and Pfmdr1 genes among primary school-going children in 15 counties in Kenya (Bungoma, Busia, Homa Bay, Migori, Kakamega, Kilifi, Kirinyaga, Kisii, Kisumu, Kwale, Siaya, Tana River, Turkana, Vihiga and West Pokot).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!