Neuronal activity is thought to play an important role in refining patterns of synaptic connectivity during development and in the molecular maturation of synapses. In experiments reported here, a 2-week infusion of tetrodotoxin (TTX) into rat hippocampus beginning on postnatal day 12 produced abnormal synchronized network discharges in in vitro slices. Discharges recorded upon TTX washout were called 'minibursts', owing to their small amplitude. They were routinely recorded in area CA3 and abolished by CNQX, an AMPA receptor antagonist. Because recurrent excitatory axon collaterals remodel and glutamate receptor subunit composition changes after postnatal day 12, experiments examined possible TTX-induced alterations in recurrent excitation that could be responsible for network hyperexcitability. In biocytin-labelled pyramidal cells, recurrent axon arbors were neither longer nor more highly branched in the TTX infusion site compared with saline-infused controls. However, varicosity size and density were increased. Whereas most varicosities contained synaptophysin and synaptic vesicles, many were not adjacent to postsynaptic specializations, and thus failed to form anatomically identifiable synapses. An increased pattern of excitatory connectivity does not appear to explain network hyperexcitability. Quantitative immunoblots also indicated that presynaptic markers were unaltered in the TTX infusion site. However, the postsynaptic AMPA and NMDA receptor subunits, GluR1, NR1 and NR2B, were increased. In electrophysiological studies EPSPs recorded in slices from TTX-infused hippocampus had an enhanced sensitivity to the NR2B containing NMDA receptor antagonist, ifenprodil. Thus, increases in subunit protein result in alterations in the composition of synaptic NMDA receptors. Postsynaptic changes are likely to be the major contributors to the hippocampal network hyperexcitability and should enhance both excitatory synaptic efficacy and plasticity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1460-9568.2003.02920.x | DOI Listing |
Curr Neuropharmacol
January 2025
Departments of Neurology & Neurosurgery, and Physiology, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4, Canada.
Background: Catamenial epilepsy, which is defined as a periodicity of seizure exacerbation occurring during the menstrual cycle, has been reported in up to 70% of epileptic women. These seizures are often non-responsive to medication and our understanding of the relation between menstrual cycle and seizure generation (i.e.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA.
Traumatic brain injury is a leading cause of chronic neurologic disability and a risk factor for development of neurodegenerative disease. However, little is known regarding the pathophysiology of human traumatic brain injury, especially in the window after acute injury and the later life development of progressive neurodegenerative disease. Given the proposed mechanisms of toxic protein production and neuroinflammation as possible initiators or contributors to progressive pathology, we examined phosphorylated tau accumulation, microgliosis and astrogliosis using immunostaining in the orbitofrontal cortex, a region often vulnerable across traumatic brain injury exposures, in an age and sex-matched cohort of community traumatic brain injury including both mild and severe cases in midlife.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, USA.
ΑBSTRACT: In Parkinson's disease (PD), Lewy pathology deposits in the cerebral cortex, but how the pathology disrupts cortical circuit integrity and function remains poorly understood. To begin to address this question, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. We reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern.
View Article and Find Full Text PDFElectroencephalographic (EEG) recordings in individuals with Fragile X Syndrome (FXS) and the mouse model of FXS ( KO) display cortical hyperexcitability at rest, as well as deficits in sensory-driven cortical network synchrony. A form of circuit hyperexcitability is observed in cortical slices of KO mice as prolonged persistent activity, or Up, states. It is unknown if the circuit mechanisms that cause prolonged Up states contribute to FXS-relevant EEG phenotypes.
View Article and Find Full Text PDFElife
January 2025
Department of Neurology, Baylor College of Medicine, Houston, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!