In glutamate-mediated excitatory neuronal cell death, immunosuppressants (FK506, Cys-A) are powerful agents that protect neurons from apoptosis. Immunosuppressants inhibit two types of enzyme, calcium/calmodulin-dependent protein phosphatase (calcineurin: CaN), and peptidyl-prolyl cis-trans-isomerase (PPIase) activity such as the FKBP family. In this study, we used a protein transduction approach to determine the functional role of CaN and to produce a potential therapeutic agent for glutamate-mediated neuronal cell death. We created a novel cell-permeable CaN autoinhibitory peptide using the 11 arginine protein transduction domain. This peptide was highly efficient at transducing into primary culture neurons, potently inhibited CaN phosphatase activities, and inhibited glutamate-mediated neuronal cell death. These results showed that CaN plays an important role in excitatory neuronal cell death and cell-permeable CaN autoinhibitory peptide could be a new drug to protect neurons from excitatory neuronal death.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1471-4159.2003.02098.xDOI Listing

Publication Analysis

Top Keywords

neuronal cell
20
cell death
20
excitatory neuronal
16
autoinhibitory peptide
12
death cell-permeable
8
protect neurons
8
protein transduction
8
glutamate-mediated neuronal
8
cell-permeable autoinhibitory
8
neuronal
6

Similar Publications

Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.

View Article and Find Full Text PDF

Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues.

Nat Methods

January 2025

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.

View Article and Find Full Text PDF

Age-related p53 SUMOylation accelerates senescence and tau pathology in Alzheimer's disease.

Cell Death Differ

January 2025

Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Aging is a major risk factor for Alzheimer's disease (AD). With the prevalence of AD increased, a mechanistic linkage between aging and the pathogenesis of AD needs to be further addressed. Here, we report that a small ubiquitin-related modifier (SUMO) modification of p53 is implicated in the process which remarkably increased in AD patient's brain.

View Article and Find Full Text PDF

Relationship between functional structures and horizontal connections in macaque inferior temporal cortex.

Sci Rep

January 2025

Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.

Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!