We report the crystal structure of N-utilizing substance A protein (NusA) from Thermotoga maritima (TmNusA), a protein involved in transcriptional pausing, termination, and antitermination. TmNusA has an elongated rod-shaped structure consisting of an N-terminal domain (NTD, residues 1-132) and three RNA binding domains (RBD). The NTD consists of two subdomains, the globular head and the helical body domains, that comprise a unique three-dimensional structure that may be important for interacting with RNA polymerase. The globular head domain possesses a high content of negatively charged residues that may interact with the positively charged flaplike domain of RNA polymerase. The helical body domain is composed of a three-helix bundle that forms a hydrophobic core with the aid of two neighboring beta-strands. This domain shows structural similarity with one of the helical domains of sigma(70) factor from Escherichia coli. One side of the molecular surface shows positive electrostatic potential suitable for nonspecific RNA interaction. The RBD is composed of one S1 domain and two K-homology (KH) domains forming an elongated RNA binding surface. Structural comparison between TmNusA and Mycobacterium tuberculosis NusA reveals a possible hinge motion between NTD and RBD. In addition, a functional implication of the NTD in its interaction with RNA polymerase is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi035118h | DOI Listing |
Front Parasitol
August 2024
Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Kelaniya, Sri Lanka.
Dirofilariasis, caused by the nematode spp., poses significant challenges in diagnosis due to its diverse clinical manifestations and complex life cycle. This comprehensive literature review focuses on the evolution of diagnostic methodologies, spanning from traditional morphological analyses to modern emerging techniques in the context of dirofilariasis diagnosis.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China.
Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.
View Article and Find Full Text PDFFront Parasitol
January 2024
Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States.
RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: FOXF2, a member of the transcription factor FOX family proteins, plays a key role in tumorigenesis and tumor aggressiveness. However, the potential molecular mechanism of FOXF2 in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Exploring its role and mechanism in ESCC progression may help identify new diagnostic markers and therapeutic targets.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, China.
Background: Many cancer cells exhibit aberrant metabolic reprogramming through abnormal mitochondrial respiration. Protein tyrosine phosphatase mitochondrial 1 (PTPMT1) is a protein tyrosine phosphatase localized to the mitochondria and linked to mitochondrial respiration. However, the expression and role of PTPMT1 in regulating the biological characteristics of small cell lung cancer (SCLC) has not yet been explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!