A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of quartz-tungsten-halogen, light-emitting diode, and plasma arc curing lights. | LitMetric

Comparison of quartz-tungsten-halogen, light-emitting diode, and plasma arc curing lights.

J Adhes Dent

Department of Dental Clinical Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.

Published: December 2003

Purpose: This study determined which light source was best at photopolymerizing five representative brands of resin composite. The hypothesis was that there would be no difference in the hardness of the composites when irradiated by any of the lights.

Materials And Methods: Six curing light/tip combinations were used to photopolymerize five resin composites. In accordance with the manufacturer's instructions, the PAC light was used for 3 s and the high intensity QTH light was used for 5 s. The other QTH and LED lights were used for 40 s. To represent the clinical environment, the samples were irradiated at a distance of 2 and 9 mm away from the tip of the light guide. The Knoop hardness was measured at the top and bottom of the composites after 15 min and again at 24 h. The hardness data were compared using a general linear model analysis with Sidak's adjustment for multiple comparisons with p < 0.01 as the level of significance.

Results: The 6 curing light/tip combinations had different effects on the hardness of the 5 composites (p < 0.01). The two LED lights could not cure the neutral shade of Pyramid Enamel in 40 s. As the distance increased from 2 to 9 mm, the decrease in hardness was not similar amongst the different light/tips and composite combinations (p < 0.0012). The curing light/tip combination which delivered the greatest total energy produced the hardest specimens.

Conclusion: 1) The 6 curing light/tip combinations had different effects on the hardness of the 5 composites (p < 0.01). 2) Neither of the two LED lights used was able to adequately polymerize the five resin composites tested. 3) The QTH light, which delivered the greatest total energy, always produced the hardest resin composite. 4) When the distance of the composites from the light guides was increased, the effect on their hardness was not the same for all light/tip combinations. It is therefore not possible to predict the performance of a curing light at 9 mm based upon power density measurements or hardness data recorded when the tip of the light guide is 2 mm away.

Download full-text PDF

Source

Publication Analysis

Top Keywords

curing light/tip
16
light/tip combinations
16
hardness composites
12
led lights
12
light
8
resin composite
8
hardness
8
resin composites
8
qth light
8
light guide
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!