Investigation of NH3 emissions from new technology vehicles as a function of vehicle operating conditions.

Environ Sci Technol

Bourns College of Engineering, Center for Environmental Research and Technology, University of California, Riverside, California 92521, USA.

Published: November 2003

The objective of this study was to measure ammonia (NH3) emissions from modern technology vehicles since information is scarce aboutthis importantsource of particulate matter (PM) precursors. Test variables included the emission level to which the vehicle was certified, the vehicle operating conditions, and catalyst age. Eight vehicles with low-emission vehicle (LEV) to super-ultralow-emission vehicle (SULEV) certification levels were tested over the Federal Test Procedure (FTP75), a US06 cycle, a hot running 505, a New York City Cycle (NYCC), and a specially designed Modal Emissions Cycle (MEC01v7) using both as-received and bench-aged catalysts. NH3 emissions in the raw exhaust were measured by tunable diode laser (TDL) absorption spectroscopy. The results show that NH3 emissions depend on driving mode and are primarily generated during acceleration events. More specifically, high NH3 emissions were found for high vehicle specific power (VSP) events and rich operating conditions. For some vehicles, NH3 emissions formed immediately after catalyst light-off during a cold start.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es030403+DOI Listing

Publication Analysis

Top Keywords

nh3 emissions
24
operating conditions
12
technology vehicles
8
vehicle operating
8
emissions
7
vehicle
6
nh3
5
investigation nh3
4
emissions technology
4
vehicles
4

Similar Publications

Synergetic effects of cerium and titanium on the catalytic performance of NiMnO for selective catalytic reduction of NO by NH.

Environ Sci Pollut Res Int

January 2025

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

In this work, NiMnO/TiO-CeO (Ce = 1.15, 2.5, 5, 7.

View Article and Find Full Text PDF

Tandem Reaction on Ru/Cu-CHA Catalysts for Ammonia Elimination with Enhanced Activity and Selectivity.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Ammonia emissions from vehicles and power plants cause severe environmental issues, including haze pollution and nitrogen deposition. Selective catalytic oxidation (SCO) is a promising technology for ammonia abatement, but current catalysts often struggle with insufficient activity and poor nitrogen selectivity, leading to the formation of secondary pollutants. In this study, we developed a bifunctional Ru/Cu-CHA zeolite catalyst for ammonia oxidation, incorporating both SCO sites (Ru) and selective catalytic reduction sites (SCR, Cu).

View Article and Find Full Text PDF

Striking Improvement of N Selectivity in NH Oxidation Reaction on FeO-Based Catalysts via SiO Doping.

Inorg Chem

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

The emission of NH has been reported to pose a serious threat to both human health and the environment. To efficiently eliminate NH, catalysts for the selective catalytic oxidation of NH (NH-SCO) have been intensively studied. FeO-based catalysts were found to exhibit superior NH oxidation activity; however, the low N selectivity made it less attractive in practical applications.

View Article and Find Full Text PDF

Gases and dissolved black carbon (DBC) formed during pyrolysis of nitrogen-rich feedstock would affect atmospheric and aquatic environments. Yet, the mechanisms driving biomass gas evolution and DBC formation are poorly understood. Using thermogravimetric-Fourier transform infrared spectrometry and two-dimensional correlation spectroscopy, we correlated the temperature-dependent primary noncondensable gas release sequence (HO → CO → HCN, NH → CH → CO) with specific defunctionalization stages in the order: dehydration, decarboxylation, denitrogenation, demethylation, and decarbonylation.

View Article and Find Full Text PDF

Sources of PM exposure and health benefits of clean air actions in Shanghai.

Environ Int

January 2025

Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.

Estimating PM exposure and its health impacts in cities involves large uncertainty due to the limitations of model resolutions. Consequently, attributing the sources of PM-related health impacts at the city level remains challenging. We characterize the health impacts associated with chronic PM exposure and anthropogenic emissions in Shanghai using a chemical transport model (GEOS-Chem) and its adjoint.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!