Previous authors have described four frontal gum-chewing patterns associated with normal and abnormal TMJ disk-condyle relationships. The objective of this study was to create an automatic detection capability (expert system) by training an artificial neural network to recognize nonreducing displaced disks from frontal chewing data. Sixty-eight (68) subjects, 29 with normal joints, 18 with unilateral nonreducing displaced disks and 21 with bilateral nonreducing displaced disks were selected from a continuous series of patients seeking treatment for TMD. Right-sided gum chewing was recorded from all patients. Left-sided chewing was also recorded from the right unilateral patients. 50% of the vertical, lateral and timing values at 10%, 65% and 100% of opening and at 30%, 70% and 90% of closing were used to train an artificial neural network. The remaining 50% were used for testing. All normal subjects were detected as normal (specificity = 100%). Two bilateral and two unilateral patients were not detected (sensitivity = 91.8%). Four (4) patients received the wrong classification (unilateral vs. bilateral) and one patient received both (undecided) for an overall accuracy = 86.8%. The artificial neural network detected, at an acceptable level of error, the presence and type of nonreducing disk displacement from frontal plane jaw recordings of gum chewing in a group of real patients seeking treatment for TMD. Since it is very inexpensive to conduct, mastication analysis appears to have the potential of an excellent cost/benefit ratio.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08869634.2003.11746260DOI Listing

Publication Analysis

Top Keywords

artificial neural
16
neural network
16
nonreducing displaced
16
displaced disks
16
patients seeking
8
seeking treatment
8
treatment tmd
8
gum chewing
8
chewing recorded
8
unilateral patients
8

Similar Publications

Motivation: The drug-disease, gene-disease, and drug-gene relationships, as high-frequency edge types, describe complex biological processes within the biomedical knowledge graph. The structural patterns formed by these three edges are the graph motifs of (disease, drug, gene) triplets. Among them, the triangle is a steady and important motif structure in the network, and other various motifs different from the triangle also indicate rich semantic relationships.

View Article and Find Full Text PDF

Enhancing beer authentication, quality, and control assessment using non-invasive spectroscopy through bottle and machine learning modeling.

J Food Sci

January 2025

Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.

Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.

View Article and Find Full Text PDF

Hardware neural networks could perform certain computational tasks orders of magnitude more energy-efficiently than conventional computers. Artificial neurons are a key component of these networks and are currently implemented with electronic circuits based on capacitors and transistors. However, artificial neurons based on memristive devices are a promising alternative, owing to their potentially smaller size and inherent stochasticity.

View Article and Find Full Text PDF

Predicting few disinfection byproducts in the water distribution systems using machine learning models.

Environ Sci Pollut Res Int

January 2025

Research Engineer I, Applied Research Center for Environment & Marine Studies, Research Institute, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.

Concerns regarding disinfection byproducts (DBPs) in drinking water persist, with measurements in water treatment plants (WTPs) being relatively easier than those in water distribution systems (WDSs) due to accessibility challenges, especially during adverse weather conditions. Machine learning (ML) models offer improved predictions of DBPs in WDSs. This study developed multiple ML models to predict Trihalomethanes (THMs), Haloacetic Acids (HAAs), Dichloroacetonitrile (DCAN), and N-nitrosodimethylamine (NDMA) in WDSs using data collected over 13 years (2008-2020) from 113 water supply systems (WSS) in Ontario.

View Article and Find Full Text PDF

Adenosine receptors (A, A, A, A) play critical roles in cellular signaling and are implicated in various physiological and pathological processes, including inflammations and cancer. The main aim of this research was to investigate structure-activity relationships (SAR) to derive models that describe the selectivity and activity of inhibitors targeting Adenosine receptors. Structural information for 16,312 inhibitors was collected from BindingDB and analyzed using machine learning methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!