We describe monochromatic light propagation in uniaxial crystals by means of an exact solution of Maxwell's equations. We subsequently develop a paraxial scheme for describing a beam traveling orthogonal to the optical axis. We show that the Cartesian field components parallel and orthogonal to the optical axis are extraordinary and ordinary, respectively, and hence uncoupled. The ordinary component exhibits a standard Fresnel behavior, whereas the extraordinary one exhibits interesting anisotropic diffraction dynamics. We interpret the anisotropic diffraction as a composition of two spatial geometrical affinities and a single Fresnel propagation step. As an application, we obtain the analytical expression of the extraordinary Gaussian beam. We then derive the first nonparaxial correction to the paraxial beam, thus giving a scheme for describing slightly nonparaxial fields. We find that nonparaxiality couples the Cartesian components of the field and that the resultant longitudinal component is greater than the correction to the transverse component orthogonal to the optical axis. Finally, we derive the analytical expression for the nonparaxial correction to the paraxial Gaussian beam.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/josaa.20.002163 | DOI Listing |
Sci Rep
January 2025
Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310058, China.
We conducted two experiments to examine the lexical and sub-lexical processing of Chinese two-character words in reading. We used a co-registration electroencephalogram (EEG) for the first fixation on target words. In Experiment 1, whole-word occurrence frequency and initial constituent character frequency were orthogonally manipulated, while in Experiment 2, whole-word occurrence frequency and end constituent character frequency were orthogonally manipulated.
View Article and Find Full Text PDFSmall
January 2025
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.
View Article and Find Full Text PDFJ Control Release
January 2025
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China. Electronic address:
Severe corneal injuries can cause visual impairment even blindness. Surgically stitching or implanting biomaterials have been developed, but their implementation requires professional surgeons, failing to address the immediate need of medical treatment. The pressing challenge lies in developing multifunctional biomaterials that enable self-management of corneal injuries.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
January 2025
Faculty of Science & Technology, Department of Psychology, Bournemouth University.
Computational models of eye movement control during reading have revolutionized the study of visual, perceptual, and linguistic processes underlying reading. However, these models can only simulate and test predictions about the reading of single lines of text. Here we report two studies that examined how input variables for lexical processing (frequency and predictability) in these models influence the processing of line-final words.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215.
Visuocortical responses are regulated by gain control mechanisms, giving rise to fundamental neural and perceptual phenomena such as surround suppression. Suppression strength, determined by the composition and relative properties of stimuli, controls the strength of neural responses in early visual cortex, and in turn, the subjective salience of the visual stimulus. Notably, suppression strength is modulated by feature similarity; for instance, responses to a center-surround stimulus in which the components are collinear to each other are weaker than when they are orthogonal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!