Agrobacterium tumefaciens strain KYRT1 harboring the virulence helper plasmid pKYRT1 induces transgenic somatic embryos (SEs) at high frequency from infected immature soybean cotyledons. KYRT1 is derived from the highly oncogenic strain Chry5. However, pKYRT1 is not completely disarmed and still contains an entire T-right (T(R)) and a portion of T-left (T(L)). In this report, binary strains, each carrying fully disarmed vir helper plasmids including pKPSF2, which is a fully disarmed version of pKYRT1, were compared to strain KYRT1 for their ability to induce transgenic SEs on immature cotyledons of soybean. Six weeks following cocultivation, histochemical GUS assays of cultured explants indicated that all fully disarmed vir helper plasmids transferred their binary T-DNA, containing a GUS-intron gene, into soybean tissues. However, none of these transformed tissues developed SEs on medium with or without 2,4-dichlorophenoxyactic acid (2,4-D). On the other hand, immature cotyledons cocultivated with strain KYRT1 exhibited high induction of transgenic SEs, but only on medium supplemented with 2,4-D. Derivatives of strain Chry5 harboring other vir helper plasmids did not induce transgenic SEs under any conditions tested, thus suggesting that the chromosomal background of KYRT1 alone was not sufficient to promote somatic embryogenesis. PCR analysis indicated that 55% of transgenic embryogenic cultures and 29% of transgenic T(0) soybean plants derived by transformation using strain KYRT1 contained T(R) from pKYRT1 in addition to the uidA gene from the binary construct. None of the transgenic tissues or T(0) plants contained T(L) DNA. These results suggest that some function coded for by T(R) of pKYRT1 influences somatic embryogenesis in conjunction with exposure of the plant tissues to 2,4-D. Since the co-transformation frequency of the undesirable T-DNA sequences from the vir helper plasmid was relatively low, the partially disarmed strain KYRT1 will likely be very useful for the production of normal transgenic plants of diverse soybean cultivars.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-003-1135-zDOI Listing

Publication Analysis

Top Keywords

vir helper
20
strain kyrt1
20
disarmed vir
12
helper plasmid
12
immature cotyledons
12
fully disarmed
12
helper plasmids
12
transgenic ses
12
transgenic
9
partially disarmed
8

Similar Publications

Interleukin-2-secreting T helper cells promote extra-follicular B cell maturation via intrinsic regulation of a B cell mTOR-AKT-Blimp-1 axis.

Immunity

December 2024

Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA. Electronic address:

During antigen-driven responses, B cells can differentiate at extra-follicular (EF) sites or initiate germinal centers (GCs) in processes that involve interactions with T cells. Here, we examined the roles of interleukin (IL)-2 secreted by T helper (Th) cells during cognate interactions with activated B cells. IL-2 boosted the expansion of EF plasma cells and the secretion of low-mutated immunoglobulin G (IgG).

View Article and Find Full Text PDF

Background: Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by the presence of pathogenic autoantibodies and a substantial influx of immune cells into skin lesions. However, the role of eosinophils in BP remains inadequately elucidated.

Objective: We sought to determine the pathologic involvement of eosinophils and eosinophil extracellular traps (EETs) in BP.

View Article and Find Full Text PDF

An hepatitis B and D virus infection model using human pluripotent stem cell-derived hepatocytes.

EMBO Rep

October 2024

Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.

Current culture systems available for studying hepatitis D virus (HDV) are suboptimal. In this study, we demonstrate that hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) are fully permissive to HDV infection across various tested genotypes. When co-infected with the helper hepatitis B virus (HBV) or transduced to express the HBV envelope protein HBsAg, HLCs effectively release infectious progeny virions.

View Article and Find Full Text PDF

Follicular Immune Landscaping Reveals a Distinct Profile of FOXP3CD4 T Cells in Treated Compared to Untreated HIV.

Vaccines (Basel)

August 2024

Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland.

Follicular helper CD4 T cells (T) are a major cellular pool for the maintenance of the HIV reservoir. Therefore, the delineation of the follicular (F)/germinal center (GC) immune landscape will significantly advance our understanding of HIV pathogenesis. We have applied multiplex confocal imaging, in combination with the relevant computational tools, to investigate F/GC in situ immune dynamics in viremic (vir-HIV), antiretroviral-treated (cART HIV) People Living With HIV (PLWH) and compare them to reactive, non-infected controls.

View Article and Find Full Text PDF
Article Synopsis
  • A study examined the effects of mRNA vaccine boosting (ipsilateral vs. contralateral leg) in mice after initial vaccination, with a focus on immune responses against SARS-CoV-2 variants.
  • Both boosting sites resulted in similar levels of antibody responses and immune cell activation, indicating no significant difference.
  • Overall, the findings suggest that where the vaccine is injected (same side or opposite leg) does not significantly affect immune protection against the Omicron BA.1 variant.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!