We describe the characterization of an 80-kDa protein cross-reacting with a monoclonal antibody against the human La autoantigen. The 80-kDa protein is a variant of rabip4 with an N-terminal extension of 108 amino acids and is expressed in the same cells. For this reason, we named it rabip4'. rabip4' is a peripheral membrane protein, which colocalized with internalized transferrin and EEA1 on early endosomes. Membrane association required the presence of the FYVE domain and was perturbed by the phosphatidylinositol 3-kinase inhibitor wortmannin. Expression of a dominant negative rabip4' mutant reduced internalization and recycling of transferrin from early endosomes, suggesting that it may be functionally linked to rab4 and rab5. In agreement with this, we found that rabip4' colocalized with the two GTPases on early endosomes and bound specifically and simultaneously to the GTP form of both rab4 and rab5. We conclude that rabip4' may coordinate the activities of rab4 and rab5, regulating membrane dynamics in the early endosomal system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC329268PMC
http://dx.doi.org/10.1091/mbc.e03-05-0343DOI Listing

Publication Analysis

Top Keywords

early endosomes
16
rab4 rab5
12
80-kda protein
8
rabip4'
6
early
5
rabip4' effector
4
rab5
4
effector rab5
4
rab4
4
rab5 rab4
4

Similar Publications

Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing.

Expert Opin Drug Deliv

January 2025

Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.

Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, chimericantigen receptor T  (CAR T) celltherapies and protein replacement.  mRNAis large, charged, and easily degraded by nucleases.

View Article and Find Full Text PDF

Von Willebrand factor (VWF) plays a critical role in hemostasis, and emerging evidence suggests its involvement in inflammation. Our study aimed to investigate the interaction between circulating plasma VWF and neutrophils (polymorphonuclear cells, PMNs), elucidate the fate of VWF after binding, and explore its impact on neutrophil behavior. Neutrophils were isolated from the whole blood of healthy volunteers, and their interaction with plasma VWF was examined ex vivo.

View Article and Find Full Text PDF

Aging rhesus macaques provide a unique model for learning how age and inflammation drive early-stage pathology in sporadic Alzheimer's disease, and for testing potential therapeutics. Unlike mice, aging macaques have extensive association cortices and inflammatory signaling similar to humans, are apolipoprotein E ε4 homozygotes, and naturally develop tau and amyloid pathology with marked cognitive deficits. Importantly, monkeys provide the unique opportunity to study early-stage, soluble hyperphosphorylated tau (p-tau), including p-tau217.

View Article and Find Full Text PDF

PPTC7 is a mitochondrial phosphatase that is essential for mitochondrial biogenesis, metabolism, protein content maintenance and transport. While the mitochondrial roles of PPTC7 are well-characterized, its roles outside the mitochondria are unclear. Here we identified a non-mitochondrial role for PPTC7 in regulating epidermal growth factor receptor (EGFR) trafficking.

View Article and Find Full Text PDF

RNA virus-induced excessive inflammation and impaired antiviral interferon (IFN-I) responses are associated with severe disease. This innate immune response, also referred to as "dysregulated immunity" is caused by viral single-stranded RNA (ssRNA)- and double-stranded-RNA (dsRNA)-mediated exuberant inflammation and viral protein-induced IFN antagonism. However, key host factors and the underlying mechanism driving viral RNA-mediated dysregulated immunity are poorly defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!