Prostate cancer is a major health threat for American men. Therefore, the development of effective therapeutic options is an urgent issue for prostate cancer treatment. In this study, we evaluated the effect of glycogen synthase kinase-3beta (GSK-3beta) suppression on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human prostate cancer cell lines. In the presence of lithium chloride (LiCl) or SB216763, the GSK-3beta inhibitors, TRAIL-induced cell death was dramatically enhanced, and the enhanced cell death was an augmented apoptotic response evidenced by increased Annexin V labeling and caspase-3 activation. GSK-3beta gene silencing mediated by a small interference RNA (siRNA) duplex also sensitized the cells to TRAIL, confirming the specificity of GSK-3beta suppression. Importantly, TRAIL stimulation increased GSK-3beta tyrosine phosphorylation at Y216, suggesting that GSK-3beta is activated by TRAIL. Furthermore, TRAIL sensitization was associated with increased proteolytic procession of caspase-8 and its downstream target BID, and z-IETD-FMK, the inhibitor specific to active caspase-8 totally blocked LiCl-induced TRAIL sensitization. Finally, Trichodion, a potent nuclear factor-kappaB (NF-kappaB) inhibitor, could not affect LiCl-induced TRAIL sensitization, although GSK-3beta inhibitors significantly blocked TRAIL-reduced NF-kappaB activity in prostate cancer cells. These results indicate that GSK-3beta suppression sensitizes prostate cancer cells to TRAIL-induced apoptosis that is dependent on caspase-8 activities but independent of NF-kappaB activation, and suggest that a mechanism involving GSK-3beta activation may be responsible for TRAIL resistance in prostate cancer cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

prostate cancer
28
gsk-3beta suppression
12
trail sensitization
12
cancer cells
12
gsk-3beta
9
glycogen synthase
8
synthase kinase-3beta
8
tumor necrosis
8
necrosis factor-related
8
factor-related apoptosis-inducing
8

Similar Publications

Comprehensive analysis of the interaction microbiome and prostate cancer: an initial exploration from multi-cohort metagenome and GWAS studies.

J Transl Med

January 2025

Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Wuhan, 430030, P.R. China.

Introduction: Prostate cancer is one of the most common cancers in the United States with a high mortality rate. In recent years, the traditional opinion about prostate microbiome was challenged. Although there still are some arguments, an escalating number of researchers are shifting their focus toward the microbiome within the prostate tumor environment.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.

View Article and Find Full Text PDF

Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.

View Article and Find Full Text PDF

Purposes: The presence of clinically significant prostate cancer (csPCa) is equivocal for patients with prostate imaging reporting and data system (PI-RADS) category 3. We aim to develop deep learning models for re-stratify risks in PI-RADS category 3 patients.

Methods: This retrospective study included a bi-parametric MRI of 1567 consecutive male patients from six centers (Centers 1-6) between Jan 2015 and Dec 2020.

View Article and Find Full Text PDF

Background And Objective: A gonadotropin-releasing hormone (GnRH) agonist such as leuprolide is widely used to achieve sustained suppression of testosterone levels, which play a critical role in the treatment of prostate cancer. Recent advances in drug delivery systems have led to the development of long-acting depot formulations, such as the 6-month intramuscular (IM) leuprolide formulation, which aim to simplify dosing and improve convenience for both patients and healthcare providers. Exploring extended dosing intervals for such formulations represents a promising approach to further optimize treatment regimens, potentially balancing efficacy with patient-centered care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!