The deduced protein product of open reading frame slr0946 from Synechocystis sp. strain PCC 6803, SynArsC, contains the conserved sequence features of the enzyme superfamily that includes the low-molecular-weight protein-tyrosine phosphatases and the Staphylococcus aureus pI258 ArsC arsenate reductase. The recombinant protein product of slr0946, rSynArsC, exhibited vigorous arsenate reductase activity (V(max) = 3.1 micro mol/min. mg), as well as weak phosphatase activity toward p-nitrophenyl phosphate (V(max) = 0.08 micro mol/min. mg) indicative of its phosphohydrolytic ancestry. pI258 ArsC from S. aureus is the prototype of one of three distinct families of detoxifying arsenate reductases. The prototypes of the others are Acr2p from Saccharomyces cerevisiae and R773 ArsC from Escherichia coli. All three have converged upon catalytic mechanisms involving an arsenocysteine intermediate. While SynArsC is homologous to pI258 ArsC, its catalytic mechanism exhibited a unique combination of features. rSynArsC employed glutathione and glutaredoxin as the source of reducing equivalents, like Acr2p and R773 ArsC, rather than thioredoxin, as does the S. aureus enzyme. As postulated for Acr2p and R773 ArsC, rSynArsC formed a covalent complex with glutathione in an arsenate-dependent manner. rSynArsC contains three essential cysteine residues like pI258 ArsC, whereas the yeast and E. coli enzymes require only one cysteine for catalysis. As in the S. aureus enzyme, these "extra" cysteines apparently shuttle a disulfide bond to the enzyme's surface to render it accessible for reduction. SynArsC and pI258 ArsC thus appear to represent alternative branches in the evolution of their shared phosphohydrolytic ancestor into an agent of arsenic detoxification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC262706PMC
http://dx.doi.org/10.1128/JB.185.23.6780-6789.2003DOI Listing

Publication Analysis

Top Keywords

pi258 arsc
20
arsenate reductase
12
r773 arsc
12
synechocystis strain
8
strain pcc
8
pcc 6803
8
protein product
8
arsc
8
micro mol/min
8
acr2p r773
8

Similar Publications

ArsC3 from Desulfovibrio alaskensis G20, a cation and sulfate-independent highly efficient arsenate reductase.

J Biol Inorg Chem

December 2014

REQUIMTE-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal.

Desulfovibrio alaskensis G20, a sulfate-reducing bacterium, contains an arsRBC2C3 operon that encodes two putative arsenate reductases, DaG20_ArsC2 and DaG20_ArsC3. In this study, resistance assays in E. coli transformed with plasmids containing either of the two recombinant arsenate reductases, showed that only DaG20_ArsC3 is functional and able to confer arsenate resistance.

View Article and Find Full Text PDF

Bacterial resistance to arsenical salts encoded on plasmid pI258 occurs by active extrusion of toxic oxyanions from cells of Staphylococcus aureus. The operon encodes for three gene products: ArsR, ArsB and ArsC. The gene product of arsB is an integral membrane protein and it is sufficient to provide resistance to arsenite and antimonite.

View Article and Find Full Text PDF

Arsenate reduction: thiol cascade chemistry with convergent evolution.

J Mol Biol

September 2006

Brussels Center for Redox Biology, Department of Molecular and Cellular Interactions, Vlaams interuniversitair Instituut voor Biotechnologie (VIB) at the Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium.

The frequent abundance of arsenic in the environment has guided the evolution of enzymes for the reduction of arsenate. The arsenate reductases (ArsC) from different sources have unrelated sequences and structural folds, and can be divided into different classes on the basis of their structures, reduction mechanisms and the locations of catalytic cysteine residues. The thioredoxin-coupled arsenate reductase class is represented by Staphylococcus aureus pI258 ArsC and Bacillus subtilis ArsC.

View Article and Find Full Text PDF

Interplay between ion binding and catalysis in the thioredoxin-coupled arsenate reductase family.

J Mol Biol

July 2006

Laboratorium voor Ultrastructuur, Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.

In the thioredoxin (Trx)-coupled arsenate reductase family, arsenate reductase from Staphylococcus aureus plasmid pI258 (Sa_ArsC) and from Bacillus subtilis (Bs_ArsC) are structurally related detoxification enzymes. Catalysis of the reduction of arsenate to arsenite involves a P-loop (Cys10Thr11Gly12Asn13Ser14Cys15Arg16) structural motif and a disulphide cascade between three conserved cysteine residues (Cys10, Cys82 and Cys89). For its activity, Sa_ArsC benefits from the binding of tetrahedral oxyanions in the P-loop active site and from the binding of potassium in a specific cation-binding site.

View Article and Find Full Text PDF

The reduction of arsenate to arsenite by pI258 arsenate reductase (ArsC) combines a nucleophilic displacement reaction with a unique intramolecular disulfide cascade. Within this reaction mechanism, the oxidative equivalents are translocated from the active site to the surface of ArsC. The first reaction step in the reduction of arsenate by pI258 ArsC consists of a nucleophilic displacement reaction carried out by Cys10 on dianionic arsenate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!