Mammals contain O-linked mannose residues with 2-mono- and 2,6-di-substitutions by GlcNAc in brain glycoproteins. It has been demonstrated that the transfer of GlcNAc to the 2-OH position of the mannose residue is catalyzed by the enzyme, protein O-mannose beta1,2-N-acetylglucosaminyltransferase (POMGnT1), but the enzymatic basis of the transfer to the 6-OH position is unknown. We recently reported on a brain-specific beta1,6-N-acetylglucosaminyltransferase, GnT-IX, that catalyzes the transfer of GlcNAc to the 6-OH position of the mannose residue of GlcNAcbeta1,2-Manalpha on both the alpha1,3- and alpha1,6-linked mannose arms in the core structure of N-glycan (Inamori, K., Endo, T., Ide, Y., Fujii, S., Gu, J., Honke, K., and Taniguchi, N. (2003) J. Biol. Chem. 278, 43102-43109). Here we examined the issue of whether GnT-IX is able to act on the same sequence of the GlcNAcbeta1,2-Manalpha in O-mannosyl glycan. Using three synthetic Ser-linked mannose-containing saccharides, Manalpha1-Ser, GlcNAcbeta1,2-Manalpha1-Ser, and Galbeta1,4-GlcNAcbeta1,2-Manalpha1-Ser as acceptor substrates, the findings show that (14)C-labeled GlcNAc was incorporated only into GlcNAcbeta1,2-Manalpha1-Ser after separation by thin layer chromatography. To simplify the assay, high performance liquid chromatography was employed, using a fluorescence-labeled acceptor substrate GlcNAcbeta1,2-Manalpha1-Ser-pyridylaminoethylsuccinamyl (PAES). Consistent with the above data, GnT-IX generated a new product which was identified as GlcNAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1-Ser-PAES by mass spectrometry and (1)H NMR. Furthermore, incorporation of an additional GlcNAc residue into a synthetic mannosyl peptide Ac-Ala-Ala-Pro-Thr(Man)-Pro-Val-Ala-Ala-Pro-NH(2) by GnT-IX was only observed in the presence of POMGnT1. Collectively, these results strongly suggest that GnT-IX may be a novel beta1,6-N-acetylglucosaminyltransferase that is responsible for the formation of the 2,6-branched structure in the brain O-mannosyl glycan.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.C300480200DOI Listing

Publication Analysis

Top Keywords

o-mannosyl glycan
12
26-branched structure
8
structure brain
8
brain o-mannosyl
8
transfer glcnac
8
position mannose
8
mannose residue
8
6-oh position
8
glcnac
6
gnt-ix
5

Similar Publications

Chemical extension and glycodendrimer formation of the matriglycan decasaccharide, -(3Xylα1-3GlcAβ1)- and its affinity for laminin.

Carbohydr Res

January 2025

Graduate School of Sustainability Science, Department of Agricultural Science, Tottori University, Tottori, 680-8553, Japan; Department of Agricultural, life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan; The United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553, Japan. Electronic address:

Muscle tissue is stabilized by the strong interaction between laminin and matriglycan. Matriglycan is a polysaccharide composed of the repeating disaccharide, -3Xylα1-3GlcAβ1-, and is a pivotal part of the core M3 O-mannosyl glycan. Patients with muscular dystrophy cannot synthesize matriglycan or the core M3 O-mannosyl glycan due to a defect in or the lack of glycosyltransferases owing to glycan synthesis.

View Article and Find Full Text PDF

Chemical Evolution of Enzyme-Catalyzed Glycosylation.

Acc Chem Res

January 2024

Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

ConspectusThe limited availability of structurally well-defined diverse glycans remains a major obstacle for deciphering biological functions as well as biomedical applications of carbohydrates. Despite tremendous progress that has been made in past decades, the synthesis of structurally well-defined complex glycans still represents one of the most challenging topics in synthetic chemistry. Chemical synthesis of glycans is a time-consuming and labor-intensive process that requires elaborate planning and skilled personnel.

View Article and Find Full Text PDF
Article Synopsis
  • - The core M3 O-mannosyl glycan on α-dystroglycan is essential for binding to extracellular matrix molecules, and defects in these glycans lead to congenital muscular dystrophies known as dystroglycanopathies.
  • - The M3 glycan's structure includes tandem D-ribitol-5-phosphate (Rbo5P), which is synthesized by specific enzymes (fukutin and fukutin-related protein) using a substrate called CDP-ribitol.
  • - Researchers explored how Rbo5P is produced in cells by examining the roles of different reductase enzymes, finding that most Rbo5P in HEK293T cells comes from ribose reduction, primarily facilitated by the
View Article and Find Full Text PDF

Gliomas are the most prevalent primary tumor of the central nervous system. Despite advances in imaging technologies, neurosurgical techniques, and radiotherapy, a cure for high-grade glioma remains elusive. Several groups have reported that protein tyrosine phosphatase receptor type Z (PTPRZ) is highly expressed in glioblastoma, and that targeting PTPRZ attenuates tumor growth in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes are the most common type of glial cells in the brain and have unique roles tied to their various subpopulations, particularly in relation to brain health and disease.
  • A specific glycosylation of the PTPRZ protein, crucial for astrocyte function, is prevalent in reactive astrocytes during demyelination, but its role across different diseases has not been fully explored.
  • Research shows that glycosylated PTPRZ is found in damaged brain areas of multiple sclerosis patients and in certain mouse models of demyelination, indicating that this modification is significant for the behavior and characteristics of astrocytes in disease contexts.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!