Electrocatalytic detection of pathogenic DNA sequences and antibiotic resistance markers.

Anal Chem

Eugene F Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.

Published: November 2003

The detection of specific DNA sequences using electrochemical readout would permit the rapid and inexpensive detection and identification of bacterial pathogens. A new assay developed for this purpose is described that harnesses a sensitive electrocatalytic process to monitor DNA hybridization. Two sequences belonging to the pathogenic microbe Helicobacter pylori are used to demonstrate the versatility and specificity of the assay: one that codes for an unique H. pylori protein and one that represents a small portion of the 23S rRNA from this organism. Both sequences can be monitored into the nanomolar concentration range. Target sequences introduced to the electrode surface as synthetic oligonucleotides, PCR products, and RNA transcripts are all detected with high specificity. In addition to reporting the presence of pathogen-related sequences, this assay can accurately resolve single-base changes in target sequences. An A2143C substitution within the H. pylori rRNA that confers antibiotic resistance significantly attenuates hybridization to an immobilized probe corresponding to the WT sequence. The single-base mismatch introduced by this mutation slows the kinetics of hybridization and permits discrimination of the two sequences when short hybridization times are employed. The remarkable sensitivity of this label-free assay to small sequence changes may provide the basis of a new method for the detection and genotyping of infectious bacteria using electrochemical methods.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac0349429DOI Listing

Publication Analysis

Top Keywords

sequences
8
dna sequences
8
antibiotic resistance
8
target sequences
8
electrocatalytic detection
4
detection pathogenic
4
pathogenic dna
4
sequences antibiotic
4
resistance markers
4
markers detection
4

Similar Publications

We report a case of Acanthamoeba infection in an HCT recipient with steroid-refractory GVHD. We highlight the multiple challenges that free-living ameba infections present to the clinician, the clinical laboratory, transplant infectious disease for review, hospital epidemiology if nosocomial transmission is considered, and public health officials, as exposure source identification can be a significant challenge. Transplant physicians should include Acanthamoeba infections in their differential diagnosis of a patient with skin, sinus, lung, and/or brain involvement.

View Article and Find Full Text PDF

Camel mastitis especially caused by Staphylococcus aureus (S. aureus), is a major risk to animal health and milk production. The current investigation evaluated the antibiotic susceptibility and virulence factors of S.

View Article and Find Full Text PDF

Root nodule symbiosis is traditionally recognized in the Fabales, Fagales, Cucurbitales, and Rosales orders within the Rosid I clade of angiosperms. However, ambiguous root nodule formation has been reported in Zygophyllaceae and Roystonea regia (Arecaceae), although a detailed analysis has yet to be conducted. We aimed to perform morphological analyses of root structures in these plants and utilize metagenomic techniques to identify and characterize the bacterial populations within the nodule-like structures.

View Article and Find Full Text PDF

A Gram-stain-positive, aerobic, yellow-pigmented, catalase-positive, oxidase-positive, non-motile with no flagella and irregularly rod-shaped, denominated strain YIM 134122, was isolated from a Stereocaulon tomentosum Fr. lichen gathered on Baima Snow Mountain in Diqing Tibetan Autonomous Prefecture, Yunnan Province, China. The novel strain grew at pH 6.

View Article and Find Full Text PDF

Purpose: Streptococcus suis serotype 14 is the second most prevalent serotype being highly prevalent in Southeast Asia. This study aimed to characterize genetic background, population structure, virulent genes, antimicrobial-resistant genes, and virulence of human S. suis serotype 14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!