We have isolated delta-conotoxin EVIA (delta-EVIA), a conopeptide in Conus ermineus venom that contains 32 amino acid residues and a six-cysteine/four-loop framework similar to that of previously described omega-, delta-, microO-, and kappa-conotoxins. However, it displays low sequence homology with the latter conotoxins. delta-EVIA inhibits Na+ channel inactivation with unique tissue specificity upon binding to receptor site 6 of neuronal Na+ channels. Using amphibian myelinated axons and spinal neurons, we showed that delta-EVIA increases the duration of action potentials by inhibiting Na+ channel inactivation. delta-EVIA considerably enhanced nerve terminal excitability and synaptic efficacy at the frog neuromuscular junction but did not affect directly elicited muscle action potentials. The neuronally selective property of delta-EVIA was confirmed by showing that a fluorescent derivative of delta-EVIA labeled motor nerve endings but not skeletal muscle fibers. In a heterologous expression system, delta-EVIA inhibited inactivation of rat neuronal Na+ channel subtypes (rNaV1.2a, rNaV1.3, and rNaV1.6) but did not affect rat skeletal (rNaV1.4) and human cardiac muscle (hNaV1.5) Na+ channel subtypes. delta-EVIA, in the range of concentrations used, is the first conotoxin found to affect neuronal Na+ channels without acting on Na+ channels of skeletal and cardiac muscle. Therefore, it is a unique tool for discriminating voltage-sensitive Na+ channel subtypes and for studying the distribution and modulation mechanisms of neuronal Na+ channels, and it may serve as a lead to design new drugs adapted to treat diseases characterized by defective nerve conduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M309576200 | DOI Listing |
Zh Nevrol Psikhiatr Im S S Korsakova
December 2024
Mental Health Research Center, Moscow, Russia.
Mental disorders are complex illnesses with multifactorial etiologies involving genetic and environmental components. This review focuses on cellular models derived from the olfactory epithelium as a promising tool to study the molecular mechanisms of some neuropsychiatric diseases. The authors consider cell lines allowing the identification of potential biomarkers and pathogenetic mechanisms of schizophrenia, bipolar disorder, and Alzheimer's disease.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.
The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.
View Article and Find Full Text PDFNeurobiol Pain
November 2024
Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
PIKfyve (1-phosphatidylinositol 3-phosphate 5-kinase), a lipid kinase, plays an important role in generating phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P). SGC-PIKFYVE-1, a potent and selective inhibitor of PIKfyve, has been used as a chemical probe to explore pathways dependent on PIKfyve activity. Based on reported changes in membrane dynamics and ion transport in response to PIKfyve inhibition, we hypothesized that pharmacological inhibition of PIKfyve could modulate pain.
View Article and Find Full Text PDFJ Neuroinflammation
December 2024
Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
Background: The global incidence of type 2 diabetes (T2D) is rapidly increasing, with retinopathy being its most common complication and a leading cause of preventable blindness. Although the precise mechanisms involved in the development of diabetic retinopathy (DR) are not fully understood, defective immunomodulation is a recognized key factor in its pathophysiology. Regulatory T cells (Treg) regulate inflammation and promote regeneration, and while they are known to have important anti-inflammatory and neuroprotective roles in other tissues, including central nervous system, their role in the diabetic retina remains largely unknown.
View Article and Find Full Text PDFEpilepsia
December 2024
Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Objective: SCN2A encodes the voltage-gated sodium (Na+) channel α subunit Na1.2, which is important for the generation and forward and back propagation of action potentials in neurons. Genetic variants in SCN2A are associated with a spectrum of neurodevelopmental disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!