Drug resistance remains a major clinical challenge for cancer treatment. Early studies suggested that overexpression of P-glycoprotein was a major contributor to the chemotherapy resistance of myeloma cells and other tumor cells. Attempts in several clinical studies to reverse multidrug resistance protein (MDR) by using MDR modulators have not yet generated promising results. Recently, the emerging knowledge about the importance of overcoming antiapoptosis and drug resistance in treating a variety of malignancies, including multiple myeloma (MM), raises new hope of improving the treatment outcome for patients with cancer. The therapeutic value of targeting therapies that aim to reverse the antiapoptotic process in MM cells has been explored in a number of experimental systems, and the results have been promising. The proteasome inhibitor PS-341 is a new specifically targeted proapoptotic therapy that has been tested in clinical studies. The results indicate that PS-341 alone is an effective therapy for patients with MM who experience disease relapse. Recent in vitro data also demonstrate that PS-341 can markedly sensitize chemotherapy-resistant MM cells to various chemotherapeutic agents. On the basis of these encouraging results, clinical studies are underway to test the efficacy of PS-341 and chemotherapeutic agents as combination therapy in treating patients with refractory and relapsed MM.

Download full-text PDF

Source
http://dx.doi.org/10.1200/JCO.2003.06.001DOI Listing

Publication Analysis

Top Keywords

drug resistance
12
clinical studies
12
multiple myeloma
8
chemotherapeutic agents
8
resistance
5
overcoming drug
4
resistance multiple
4
myeloma emergence
4
emergence therapeutic
4
therapeutic approaches
4

Similar Publications

Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.

View Article and Find Full Text PDF

Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.

View Article and Find Full Text PDF

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

Modulation of placental angiogenesis by metformin in a rat model of gestational diabetes.

Histochem Cell Biol

January 2025

Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.

Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin.

View Article and Find Full Text PDF

Advances in understanding the role of squalene epoxidase in cancer prognosis and resistance.

Mol Biol Rep

January 2025

Department of Orthopedic Surgery, Institute of Bone Tumor, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200092, China.

Recently, there has been burgeoning interest in the involvement of cholesterol metabolism in cancer. Squalene epoxidase (SQLE), as a critical rate-limiting enzyme in the cholesterol synthesis pathway, has garnered attention due to its overexpression in various cancer types, thereby significantly impacting tumor prognosis and resistance mechanisms. Firstly, SQLE contributes to unfavorable prognosis through diverse mechanisms, encompassing modulation of the PI3K/AKT signaling pathway, manipulation of the cancer microenvironment, and participation in ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!